16.如圖,點(diǎn)D、E分別在△ABC的邊BC、AC上,且AB=AC,AD=AE.
①當(dāng)∠B為定值時,∠CDE為定值;
②當(dāng)∠1為定值時,∠CDE為定值;
③當(dāng)∠2為定值時,∠CDE為定值;
④當(dāng)∠3為定值時,∠CDE為定值;
則上述結(jié)論正確的序號是②.

分析 根據(jù)等邊對等角,可找到角之間的關(guān)系,再利用外角的性質(zhì)可找到∠CDE和∠1之間的關(guān)系,從而得到答案.

解答 解:∵AB=AC,
∴∠B=∠C,
又∠ADC=∠1+∠B,
∴∠ADE=∠ADC-∠CDE=∠1+∠B-∠CDE,
∵AD=AE,
∴∠ADE=∠3=∠CDE+∠C=∠CDE+∠B,
∴∠1+∠B-∠CDE=∠CDE+∠B,
∴∠1=2∠CDE,
∴當(dāng)∠1為定值時,∠CDE為定值,
故答案為:②.

點(diǎn)評 本題主要考查等腰三角形的性質(zhì)和外角的性質(zhì),掌握等邊對等角和三角形的外角等于不相鄰兩內(nèi)角的和是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.已知一次函數(shù)y=kx+b,函數(shù)值y隨自變置x的增大而減小,且kb<0,則函數(shù)y=kx+b的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.若a、b是互不相等的兩個實(shí)數(shù),且分別滿足a2-a-1=0,b2-b-1=0,則a+b+2ab的值為( 。
A.-1B.1C.3D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.已知a2-5a+2=0,則分式$\frac{{a}^{4}+4}{{a}^{2}}$的值為(  )
A.21B.$\frac{1}{21}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在⊙O中,OE垂直于弦AB,垂足為點(diǎn)D,交⊙O于點(diǎn)C,∠EAC=∠CAB.
(1)求證:直線AE是⊙O的切線;
(2)若AB=8,sin∠E=$\frac{3}{5}$,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.計(jì)算:(a-2b)3=$\frac{{a}^{6}}{^{3}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在△ABC中,AB=6cm,AC=BC=5cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB方向以1cm/s的速度做勻速運(yùn)動,點(diǎn)D在BC上且滿足∠CPD=∠A,則當(dāng)運(yùn)動時間t=1或5s時,以點(diǎn)C為圓心,以CD為半徑的圓與AB相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知圓的直徑AB=13,C為圓上一點(diǎn),過C作CD⊥AB于D(AD>BD)
(1)求證:CD2=AD•DB;
(2)若CD=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.二次函數(shù)y=ax2+bx+c(a≠0,a,b,c為常數(shù))的圖象如圖所示,則ax2+bx+c+m=0的實(shí)數(shù)根的條件是( 。
A.m≥-2B.m≤-2C.m≤2D.m≥2

查看答案和解析>>

同步練習(xí)冊答案