【題目】圖①是我們常見(jiàn)的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.
(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫(xiě)作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑等于
【答案】
(1)
解:如圖所示,八邊形ABCDEFGH即為所求
(2)
【解析】(1)作AE的垂直平分線交⊙O于C,G,作∠AOG,∠EOG的角平分線,分別交⊙O于H,F(xiàn),反向延長(zhǎng) FO,HO,分別交⊙O于D,B順次連接A,B,C,D,E,F(xiàn),G,H,八邊形ABCDEFGH即為所求;
(2)由八邊形ABCDEFGH是正八邊形,求得∠AOD=3=135°得到的長(zhǎng)=,設(shè)這個(gè)圓錐底面圓的半徑為R,根據(jù)圓的周長(zhǎng)的公式即可求得結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正多邊形和圓和圓錐的相關(guān)計(jì)算,掌握?qǐng)A的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角;圓的外切四邊形的兩組對(duì)邊的和相等;圓錐側(cè)面展開(kāi)圖是一個(gè)扇形,這個(gè)扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值 (a﹣ )( ﹣1)÷ ,其中a,b分別為關(guān)于x的一元二次方程x2﹣ x+1=0的兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為開(kāi)拓學(xué)生視野,開(kāi)展“課外讀書(shū)周”活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生總數(shù)為_(kāi)___人,被調(diào)查學(xué)生的課外閱讀時(shí)間的中位數(shù)是___小時(shí),眾數(shù)是___小時(shí);
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是;
(4)若全校九年級(jí)共有學(xué)生700人,估計(jì)九年級(jí)一周課外閱讀時(shí)間為6小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖象的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F(xiàn).
(1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為 , 當(dāng)二次函數(shù)L1 , L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍是
(2)當(dāng)EF=MN時(shí),求a的值,并判斷四邊形ENFM的形狀(直接寫(xiě)出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程-a(x+1)2+1=0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(0,3),且當(dāng)x=1時(shí),y有最小值2.
(1)求a,b,c的值
(2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實(shí)數(shù)),它的圖象的頂點(diǎn)為D.
①當(dāng)k=1時(shí),求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點(diǎn)坐標(biāo);
②請(qǐng)?jiān)诙魏瘮?shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個(gè)點(diǎn)M,N,不論k取何值,這兩個(gè)點(diǎn)始終關(guān)于x軸對(duì)稱,直接寫(xiě)出點(diǎn)M,N的坐標(biāo)(點(diǎn)M在點(diǎn)N的上方);
③過(guò)點(diǎn)M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點(diǎn)P,當(dāng)k為何值時(shí),點(diǎn)D在∠NMP的平分線上?
④當(dāng)k取﹣2,﹣1,0,1,2時(shí),通過(guò)計(jì)算,得到對(duì)應(yīng)的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點(diǎn)分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請(qǐng)問(wèn):頂點(diǎn)的橫、縱坐標(biāo)是變量嗎?縱坐標(biāo)是如何隨橫坐標(biāo)的變化而變化的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過(guò)點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)P,連接BC.
(1)求證:∠PCA=∠B
(2)已知∠P=40°,點(diǎn)Q在優(yōu)弧ABC上,從點(diǎn)A開(kāi)始逆時(shí)針運(yùn)動(dòng)到點(diǎn)C停止(點(diǎn)Q與點(diǎn)C不重合),當(dāng)△ABQ與△ABC的面積相等時(shí),求動(dòng)點(diǎn)Q所經(jīng)過(guò)的弧長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長(zhǎng)為( )
A.4
B.3
C.2
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com