【題目】如圖,二次函數(shù)yax2+bx3的圖象與x軸交于A、By軸交于點C,頂點坐標為(1,﹣4

1)求二次函數(shù)解析式;

2)該二次函數(shù)圖象上是否存在點M,使SMABSCAB,若存在,求出點M的坐標.

【答案】1yx22x3;(2存在,點M的坐標為(1+3),(1,3)或(2,﹣3

【解析】

1)二次函數(shù)yax2+bx3的頂點坐標為(1,﹣4),可以求得a、b的值,從而可以得到該函數(shù)的解析式;

2)根據(jù)(1)中求得的函數(shù)解析式可以得到點C的坐標,再根據(jù)SMABSCAB,即可得到點M的縱坐標的絕對值等于點C的縱坐標的絕對值,從而可以求得點M的坐標.

解:(1)∵二次函數(shù)yax2+bx3的頂點坐標為(1,﹣4),

,得,

∴該函數(shù)的解析式為yx22x3;

2)該二次函數(shù)圖象上存在點M,使SMABSCAB

yx22x3=(x3)(x+1),

∴當x0時,y=﹣3,當y0時,x3x=﹣1,

∵二次函數(shù)yax2+bx3的圖象與x軸交于A、By軸交于點C,

∴點A的坐標為(﹣1,0),點B的坐標為(3,0),點C的坐標為(0,﹣3),

SMABSCAB,點M在拋物線上,

∴點M的縱坐標是3或﹣3,

y3時,3x22x3,得x11+x21;

y=﹣3時,﹣3x22x3,得x30x42;

∴點M的坐標為(1+,3),(1,3)或(2,﹣3).

故答案為:(1yx22x3;(2)存在,點M的坐標為(1+,3),(1,3)或(2,﹣3).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我們把有兩邊對應(yīng)相等,且夾角互補(不相等)的兩個三角形叫做互補三角形,如圖1,□ABCD中,AOBBOC互補三角形”.

(1)寫出圖1中另外一組互補三角形”_______;

(2)在圖2中,用尺規(guī)作出一個EFH,使得EFHEFG互補三角形,且EFHEFGEF同側(cè),并證明這一組互補三角形的面積相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強學生的環(huán)保意識,某校組織了一次全校2000名學生都參加的環(huán)保知識考試,考題共10題.考試結(jié)束后,學校團委隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次抽查的樣本容量是   ;在扇形統(tǒng)計圖中,m=   ,n=   ,“答對8所對應(yīng)扇形的圓心角為   度;

(2)將條形統(tǒng)計圖補充完整;

(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y12x2+的頂點為M,直線y2x,點Pn,0)為x軸上的一個動點,過點Px軸的垂線分別交拋物線y12x2+和直線y2x于點A、點B

1)直接寫出A、B兩點的坐標(用含n的代數(shù)式表示)

2)設(shè)線段AB的長為d,求d關(guān)于n的函數(shù)關(guān)系式及d的最小值,并直接寫出此時線段OB與線段PM的位置關(guān)系和數(shù)量關(guān)系;

3)已知二次函數(shù)yax2+bx+ca,bc為整數(shù)且a0),對一切實數(shù)x恒有xy2x2+,求a,bc的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)的圖象的頂點在的圖象上,則稱的伴隨函數(shù),如的伴隨函數(shù).

1)若函數(shù)的伴隨函數(shù),求的值;

2)已知函數(shù)的伴隨函數(shù).

①當點(2,-2)在二次函數(shù)的圖象上時,求二次函數(shù)的解析式;

②已知矩形,為原點,點軸正半軸上,點軸正半軸上,點62),當二次函數(shù)的圖象與矩形有三個交點時,求此二次函數(shù)的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是(

A. (4n﹣1,B. (2n﹣1,C. (4n+1,D. (2n+1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( 。

A. 2cm B. 2.5cm C. 3cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA;

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

同步練習冊答案