分析 過點(diǎn)P作AP⊥EF交EF于點(diǎn)A,連接PE,設(shè)OP=x,由點(diǎn)E的坐標(biāo)易求AP=OB=3,AE=AB-BE=x-1,在Rt△ABE中,由勾股定理可得32+(x-1)2=x2,解得x的值,即可求出BF的長(zhǎng),進(jìn)而可求出點(diǎn)F的坐標(biāo).
解答 解:過點(diǎn)P作AP⊥EF交EF于點(diǎn)A,連接PE,設(shè)OP=x,
∵⊙P與x軸相切于原點(diǎn)O,
∴OP⊥OE,
∵平行于y軸的直線交⊙P于E,F(xiàn)兩點(diǎn),
∴四邊形APOB是矩形,
∴AB=OP=x,
∵點(diǎn)E的坐標(biāo)是(-3,-1),
∴AP=OB=3,AE=AB-BE=x-1,
在Rt△ABE中,32+(x-1)2=x2,
解得x=5,
∴AE=4,
∵AF=AE,
∴EF=8,
∴BF=EF+BE=9,
∴點(diǎn)F的坐標(biāo)是(-3,-9).
故答案為(-3,-9).
點(diǎn)評(píng) 本題綜合考查了圓形的性質(zhì)和坐標(biāo)的確定以及勾股定理的運(yùn)用和矩形的判定及其性質(zhì),是綜合性較強(qiáng),難度中等的綜合題,解題的關(guān)鍵是根據(jù)勾股定理求出⊙P的半徑,從而得到F的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 三角形內(nèi)心到三個(gè)頂點(diǎn)的距離相等 | B. | 方程x2-2x+1=0有兩個(gè)不等實(shí)根 | ||
C. | y=ax2+bx+c是二次函數(shù) | D. | 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$)6米 | B. | ($\frac{1}{3}$)7米 | C. | ($\frac{2}{3}$)6米 | D. | ($\frac{2}{3}$)7米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com