【題目】如圖,已知一次函數(shù)y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數(shù)y=ax2+bx+c的圖象交于y軸上一點B,該二次函數(shù)的頂點C在x軸上,且OC=2.
(1)求點B坐標;
(2)求二次函數(shù)y=ax2+bx+c的解析式;
(3)設一次函數(shù)y=x+m的圖象與二次函數(shù)y=ax2+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.
【答案】(1)B(0,2);(2)y=0.5x2﹣2x+2;(3)P1(1,0)和P2(7.25,0);
【解析】
(1)根據(jù)y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(2)二次函數(shù)y=ax2+bx+c的圖象與x軸只有唯一的交點C,且OC=2.得出可設二次函數(shù)y=ax2+bx+c=a(x﹣2)2,進而求出即可;(3)根據(jù)當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.
(1)∵y=x+2交x軸于點A(﹣4,0),
∴0=×(﹣4)+m,
∴m=2,
與y軸交于點B,
∵x=0,
∴y=2
∴B點坐標為:(0,2),
(2)∵二次函數(shù)y=ax2+bx+c的圖象與x軸只有唯一的交點C,且OC=2
∴可設二次函數(shù)y=a(x﹣2)2
把B(0,2)代入得:a=0.5
∴二次函數(shù)的解析式:y=0.5x2﹣2x+2;
(3)(Ⅰ)當B為直角頂點時,過B作BP1⊥AD交x軸于P1點
由Rt△AOB∽Rt△BOP1
∴,
∴,
得:OP1=1,
∴P1(1,0),
(Ⅱ)作P2D⊥BD,連接BP2,
將y=0.5x+2與y=0.5x2﹣2x+2聯(lián)立求出兩函數(shù)交點坐標:
D點坐標為:(5,4.5),
則AD=,
當D為直角頂點時
∵∠DAP2=∠BAO,∠BOA=∠ADP2,
∴△ABO∽△AP2D,
∴, ,
解得:AP2=11.25,
則OP2=11.25﹣4=7.25,
故P2點坐標為(7.25,0);
∴點P的坐標為:P1(1,0)和P2(7.25,0).
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時相向勻速行駛,當乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,而甲車到達B地后立即掉頭,并保持原速與乙車同向行駛,經(jīng)過15小時后兩車同時到達距A地300千米的C地(中途休息時間忽略不計).設兩車行駛的時間為x(小時),兩車之間的距離為y(千米),y與x之間的函數(shù)關系如圖所示,則當甲車到達B地時,乙車距A地_____千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數(shù)量及位置關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“2018雙十一購物狂歡節(jié)”,京東商城當天的交易額約1600億元.“預計在2020雙十一購物狂歡節(jié)”京東商城當天的交易額能達到約1936億元.
(1)求出2018至2020年京東商城雙十一當天的交易額的年平均增長率;
(2)劉老師在“雙十一”到來之前,分別在京東商城的兩家店里選了一套標價為1900元的書籍和一件標價為990元的羽絨服.據(jù)了解,雙十一當天書籍打五五折后再降價n%.同時,該羽絨服店的老板先將羽絨服提價n%,雙十一當天再降價n%,最后劉老師雙十一購買兩種商品所花費的總金額恰好是1760元.求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm2.(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點A坐標是,則經(jīng)過第2019次變換后所得的A點坐標是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)前小明花1200元從市場購進批發(fā)價分別為每箱30元與50元的、兩種水果進行銷售,分別以每箱35元與60元的價格出售,設購進水果箱,水果箱.
(1)求關于的函數(shù)表達式;
(2)若要求購進水果的數(shù)量不少于水果的數(shù)量,則應該如何分配購進、水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,直線 y x 4與 x 軸、y 軸分別交于點 A、點 B,點 D 在 y 軸的負半軸上,若將△DAB 沿著直線 AD 折疊,點 B 恰好落在 x 軸正半軸上的點 C處.
(1)求直線 CD 的表達式;
(2)在直線 AB 上是否存在一點 P,使得 SPCD SOCD?若存在,直接寫出點 P 的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com