【題目】如圖,等腰三角形ABC的底邊BC長為4,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),若△CDM周長的最小值為8,則△ABC的面積為( 。
A.12B.16C.24D.32
【答案】A
【解析】
連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,故AD的長為CM+MD的最小值,再根據(jù)三角形的周長求出AD的長,由此即可得出結(jié)論.
連接AD,
∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),
∴AD⊥BC,
∵EF是線段AC的垂直平分線,
∴點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,
∴AD的長為CM+MD的最小值,
∵△CDM周長的最小值為8,
∴AD=8-BC=8-2=6
∴S△ABC=BCAD=×4×6=12,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017貴州省遵義市)如圖,拋物線(a<0,a、b為常數(shù))與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),直線AB的函數(shù)關(guān)系式為.
(1)求該拋物線的函數(shù)關(guān)系式與C點(diǎn)坐標(biāo);
(2)已知點(diǎn)M(m,0)是線段OA上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點(diǎn),當(dāng)m為何值時(shí),△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當(dāng)△BDE恰好是以DE為底邊的等腰三角形時(shí),動(dòng)點(diǎn)M相應(yīng)位置記為點(diǎn)M′,將OM′繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在0°到90°之間);
①探究:線段OB上是否存在定點(diǎn)P(P不與O、B重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向上的拋物線y=ax2+bx+c,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對于下列命題:①b-2a=0;②abc>0;③a-2b+4c<0;④8a+c>0.其中正確的有
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿足S矩形ABCD=3S△PAB,則PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017濟(jì)寧,第21題,9分)已知函數(shù)的圖象與x軸有兩個(gè)公共點(diǎn).
(1)求m的取值范圍,并寫出當(dāng)m取范圍內(nèi)最大整數(shù)時(shí)函數(shù)的解析式;
(2)題(1)中求得的函數(shù)記為C1.
①當(dāng)n≤x≤﹣1時(shí),y的取值范圍是1≤y≤﹣3n,求n的值;
②函數(shù)的圖象由函數(shù)C1的圖象平移得到,其頂點(diǎn)P落在以原點(diǎn)為圓心,半徑為的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點(diǎn)為M,求點(diǎn)P與點(diǎn)M距離最大時(shí)函數(shù)C2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿足|2a+6|+(2a﹣3b+12)2=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向左平移2個(gè)單位,再向上平移2個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD.
(1)請直接寫出A、B、C、D四點(diǎn)的坐標(biāo);
(2)如圖2,點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是線段CD的中點(diǎn),連接PQ,PO,當(dāng)點(diǎn)P在線段AC上移動(dòng)時(shí)(不與A,C重合),請找出∠PQD,∠OPQ,∠POB的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在坐標(biāo)軸上是否存在點(diǎn)M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)為“有趣數(shù)對”,記為如:數(shù)對,都是“有趣數(shù)對”.
(1)數(shù)對,中是“有趣數(shù)對”的是 ;
(2)若是“有趣數(shù)對”,求的值;
(3)請?jiān)賹懗鲆粚Ψ蠗l件的“有趣數(shù)對” ;(注意:不能與題目中已有的“有趣數(shù)對”重復(fù))
(4)若是“有趣數(shù)對”求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E是射線AC上一點(diǎn),點(diǎn)F是正方形ABCD外角平分線CM上一點(diǎn),且CF=AE,連接BE,EF.
(1)如圖1,當(dāng)E是線段AC的中點(diǎn)時(shí),直接寫出BE與EF的數(shù)量關(guān)系;
(2)當(dāng)點(diǎn)E不是線段AC的中點(diǎn),其它條件不變時(shí),請你在圖2中補(bǔ)全圖形,判斷(1)中的結(jié)論是否成立,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)B,E,F在一條直線上時(shí),求∠CBE的度數(shù).(直接寫出結(jié)果即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com