(1)在平面直角坐標(biāo)系中,將直線l:y=-2x+4繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到直線l1,再將直線l1;向上平移1個(gè)單位得到直線l2,直接寫出直線l1、l2的解析式.
(2)在平面直角坐標(biāo)系中,將直線a:y=-2x+m繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到直線a1,再將直線a1向上平移k個(gè)單位得到直線a2,直接寫出直線a1、a2的解析式.
(3)在平面直角坐標(biāo)系中,將直線b:y=nx+m繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到直線b1,再將直線b1沿豎直方向平移k個(gè)單位得到直線b2,直接寫出直線b2的解析式.
分析:(1)順時(shí)針旋轉(zhuǎn)90°后k變成原來的負(fù)倒數(shù),b變成原來的-
1
2
,再根據(jù)向上平移,橫坐標(biāo)不變,縱坐標(biāo)增加即可得出答案.
(2)順時(shí)針旋轉(zhuǎn)90°后k變成原來的負(fù)倒數(shù),b變成原來的-
1
2
,再根據(jù)向上平移,橫坐標(biāo)不變,縱坐標(biāo)增加即可得出答案.
(3)順時(shí)針旋轉(zhuǎn)90°后k變成原來的負(fù)倒數(shù),b變成原來的-
1
2
,再根據(jù)向上平移,橫坐標(biāo)不變,縱坐標(biāo)增加即可得出答案.
解答:解:根據(jù)分析可得:
(1)l1:y=
1
2
x-2,l2:y=
1
2
x-1;
(2)a1:y=
1
2
x-
m
2
,a2:y=
1
2
x-
m
2
+k;
(3)b2:y=-
1
n
x+
m
n
±k.
點(diǎn)評(píng):本題考查圖形的平移變換和函數(shù)解析式之間的關(guān)系.在平面直角坐標(biāo)系中,圖形的平移與圖形上某點(diǎn)的平移相同.平移中點(diǎn)的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.平移后解析式有這樣一個(gè)規(guī)律“左加右減,上加下減”.關(guān)鍵是要搞清楚平移前后的解析式有什么關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,過點(diǎn)P作PD交AB于點(diǎn)D.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)什么位置時(shí),△OCP為等腰三角形,求這時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)什么位置時(shí),使得∠CPD=∠OAB,且
BD
BA
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,以(5,1)為圓心,以2個(gè)單位長度為半徑的⊙A交x軸于點(diǎn)B、C,
(1)將⊙A向左平移
3
3
個(gè)單位長度與y軸首次相切得到⊙A′,此時(shí)點(diǎn)A′的坐標(biāo)為
(2,1)
(2,1)
,陰影部分的面積S=
6
6

(2)BC=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn).旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖1).
(1)求邊AB在旋轉(zhuǎn)過程中所掃過的面積;
(2)設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論;
(3)設(shè)MN=m,當(dāng)m為何值時(shí)△OMN的面積最小,最小值是多少?并直接寫出此時(shí)△BMN內(nèi)切圓的半徑.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(8,0),D點(diǎn)坐標(biāo)為(0,6),則AC長為
10
10

查看答案和解析>>

同步練習(xí)冊答案