7、設(shè)a、b、c是實(shí)數(shù),且a2-bc-8a+7=0,b2+c2+bc-6a+6=0,則a的取值范圍是
1≤a≤9
分析:把a(bǔ)2-bc-8a+7=0變形為bc=a2-8a+7的形式,再把b2+c2+bc-6a+6=0化為完全平方公式的形式,求出以b、c為根的一元二次方程,根據(jù)根的判別式即可求出a的取值范圍.
解答:解:∵由a2-bc-8a+7=0得,bc=a2-8a+7…①,
把①代入b2+c2+bc-6a+6=0得,(b+c)2=6a-6+bc=6a-6+a2-8a+7=a2-2a+1=(a-1)2
∴b+c=±(a-1),故b、c為方程x2±(a-1)x+a2-8a+7=0的兩實(shí)根,
∴△≥0,
∴(a-1)2-4(a2-8a+7)≥0,
∴a2-10a+9≤0,
∴1≤a≤9.
故答案為:1≤a≤9.
點(diǎn)評(píng):本題考查的是完全平方公式及一元二次方程根的判別式,能把方程化為完全平方公式的形式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a、b、c是實(shí)數(shù),且a2-bc-8a+7=0,b2+c2+bc-6a+6=0,那么a的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:黃岡難點(diǎn)課課練  八年級(jí)數(shù)學(xué)上冊(cè) 題型:044

設(shè)a、b、c是實(shí)數(shù),若a+b+c=2+4+6-14,求a(b+c)+b(c+a)+c(a+b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)a、b、c是實(shí)數(shù),且a2-bc-8a+7=0,b2+c2+bc-6a+6=0,則a的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)a、b、c是實(shí)數(shù),且a2-bc-8a+7=0,b2+c2+bc-6a+6=0,則a的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案