【題目】如圖,已知△ABC中,AB=AC,AD為中線,點(diǎn)P是AD上一點(diǎn),點(diǎn)Q是AC上一點(diǎn),且∠BPQ+∠BAQ=180°.
(1)若∠ABP=α,求∠PQC的度數(shù)(用含α的式子表示);
(2)求證:BP=PQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是一塊直角三角形紙片,∠ACB=90°,將該三角形紙片折疊,使點(diǎn)A與點(diǎn)C重合,DE為折痕.
(1)線段AE和BE有怎樣的數(shù)量關(guān)系?寫出你的結(jié)論并進(jìn)行證明.
結(jié)論: .
證明:
(2)直角三角形斜邊的中線和斜邊有怎樣的數(shù)量關(guān)系?寫出你的結(jié)論(不證明).
結(jié)論: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為邊在AB的右側(cè)作△ADE,且∠DAE=90°,AD=AE.連接CE.
(1)如圖1,若點(diǎn)D在BC邊上,則∠BCE=______度;
(2)如圖2,若點(diǎn)D在BC的延長線上運(yùn)動(dòng).
①∠BCE的度數(shù)是否發(fā)生變化?請(qǐng)說明理由;
②若BC=6,CD=2,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE平分∠BAC,點(diǎn)D是AE上一點(diǎn),連接BD,CD.請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使△ABD≌△ACD.添加的條件是:____.(寫出一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC的邊AC上取一點(diǎn),使得AB=AD,若點(diǎn)D恰好在BC的垂直平分線上,寫出∠ABC與∠C的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC,∠ABC=120°,點(diǎn)E是AC上一點(diǎn),連接BE,且∠BEC=50°,D為點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn),連接CD,將線段EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)40°得到線段EF,連接DF.
(1)請(qǐng)你在下圖中補(bǔ)全圖形;
(2)請(qǐng)寫出∠EFD的大小,并說明理由;
(3)連接CF,求證:DF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將直角三角形的直角頂點(diǎn)放在點(diǎn)P(4,4)處,兩直角邊分別與坐標(biāo)軸交于點(diǎn)A和點(diǎn)B,則OA+OB的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CQ∥DB,且CQ=DP,連接AP、BQ、PQ.
(1)求證:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)△APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com