【題目】如圖,點A在以BC為直徑的⊙O內(nèi),且AB=AC,以點A為圓心,AC長為半徑作弧,得到扇形ABC,剪下扇形ABC圍成一個圓錐(AB和AC重合),若∠BAC=120°,BC=2 ,則這個圓錐底面圓的半徑是( )
A.
B.
C.
D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸邊點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向,如圖2.
(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(﹣2,0),B(2,0),C(3,5).
(1)求過點A,C的直線解析式和過點A,B,C的拋物線的解析式;
(2)求過點A,B及拋物線的頂點D的⊙P的圓心P的坐標;
(3)在拋物線上是否存在點Q,使AQ與⊙P相切,若存在請求出Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y1=ax+c和反比例函數(shù)y2= 的圖象如圖所示,則二次函數(shù)y3=ax2+bx+c的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a1= ,a2= ,a3= ,…,an+1= (n為正整數(shù),且t≠0,1),則a2016=(用含有t的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當S△ABE=S△ABC時,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B.C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由.
(2)當△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①探究BD與CF之間的位置關系,并說明理由;
②當AB= ,AD= +1時,求線段DH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com