【題目】已知O為坐標原點,拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A(x1,0),B(x2,0),與y軸交于點C,且O,C兩點間的距離為3,x1x2<0,|x1|+|x2|=4,點A,C在直線y2=-3x+t上.
(1)求點C的坐標;
(2)當y1隨著x的增大而增大時,求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個單位,當平移后的直線與P有公共點時,求2n2-5n的最小值.
【答案】(1)(2) 若c=3,當y隨x增大而增大時,x≤-1;若c=-3,當y隨x增大而增大時,x≥1;
【解析】
試題分析:(1)利用y軸上點的坐標性質表示出C點坐標,再利用O,C兩點間的距離為3求出即可;
(2)分別利用①若C(0,3),即c=3,以及②若C(0,-3),即c=-3,得出A,B點坐標,進而求出函數(shù)解析式,進而得出答案;
(3)利用①若c=3,則y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,得出y1向左平移n個單位后,則解析式為:y3=-(x+1+n)2+4,進而求出平移后的直線與P有公共點時得出n的取值范圍,②若c=-3,則y1=x2-2x-3=(x-1)2-4,y2=-3x-3,y1向左平移n個單位后,則解析式為:y3=(x-1+n)2-4,進而求出平移后的直線與P有公共點時得出n的取值范圍,進而利用配方法求出函數(shù)最值.
試題解析:(1)令x=0,則y=c,
故C(0,c),
∵OC的距離為3,
∴|c|=3,即c=±3,
∴C(0,3)或(0,-3);
(2)∵x1x2<0,
∴x1,x2異號,
①若C(0,3),即c=3,
把C(0,3)代入y2=-3x+t,則0+t=3,即t=3,
∴y2=-3x+3,
把A(x1,0)代入y2=-3x+3,則-3x1+3=0,
即x1=1,
∴A(1,0),
∵x1,x2異號,x1=1>0,∴x2<0,
∵|x1|+|x2|=4,
∴1-x2=4,
解得:x2=-3,則B(-3,0),
代入y1=ax2+bx+3得,
,
解得:
,
∴y1=-x2-2x+3=-(x+1)2+4,
則當x≤-1時,y隨x增大而增大.
②若C(0,-3),即c=-3,
把C(0,-3)代入y2=-3x+t,則0+t=-3,即t=-3,
∴y2=-3x-3,
把A(x1,0),代入y2=-3x-3,
則-3x1-3=0,
即x1=-1,
∴A(-1,0),
∵x1,x2異號,x1=-1<0,∴x2>0
∵|x1|+|x2|=4,
∴1+x2=4,
解得:x2=3,則B(3,0),
代入y1=ax2+bx+3得,
,
解得:
,
∴y1=x2-2x-3=(x-1)2-4,
則當x≥1時,y隨x增大而增大,
綜上所述,若c=3,當y隨x增大而增大時,x≤-1;若c=-3,當y隨x增大而增大時,x≥1;
(3)①若c=3,則y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,
y1向左平移n個單位后,則解析式為:y3=-(x+1+n)2+4,
則當x≤-1-n時,y隨x增大而增大,
y2向下平移n個單位后,則解析式為:y4=-3x+3-n,
要使平移后直線與P有公共點,則當x=-1-n,y3≥y4,
即-(-1-n+1+n)2+4≥-3(-1-n)+3-n,
解得:n≤-1,
∵n>0,∴n≤-1不符合條件,應舍去;
②若c=-3,則y1=x2-2x-3=(x-1)2-4,y2=-3x-3,
y1向左平移n個單位后,則解析式為:y3=(x-1+n)2-4,
則當x≥1-n時,y隨x增大而增大,
y2向下平移n個單位后,則解析式為:y4=-3x-3-n,
要使平移后直線與P有公共點,則當x=1-n,y3≤y4,
即(1-n-1+n)2-4≤-3(1-n)-3-n,
解得:n≥1,
綜上所述:n≥1,
2n2-5n=2(n-)2-,
∴當n=時,2n2-5n的最小值為:-.
科目:初中數(shù)學 來源: 題型:
【題目】平方根節(jié)是數(shù)學愛好者的節(jié)目,這一天的月份和日期的數(shù)字正好是當年年份最后兩位數(shù)字的算術平方根,例如2009年的3月3日,2016年的4月4日.請你寫出本世紀內你喜歡的一個平方根(題中所舉例子除外).年月日.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.若設這個班有x名學生,可列出的方程為( )
A. 3x+20=4x-25 B. 3(x+20)=4(x-25) C. 3x-25=4x+20 D. 3x-20=4x+25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com