【題目】若點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為( )
A. 2+ B. C. 2+或2- D. 4+2或2-
【答案】C
【解析】
試題解析:由題意可得,如圖所示,
存在兩種情況,當(dāng)△ABC為△A1BC時,連接OB、OC,∵點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,OB=OC,∴△OBC為等邊三角形,OB=OC=BC=2,OA1⊥BC于點(diǎn)D,∴CD=1,OD==,∴=BCA1D==;
當(dāng)△ABC為△A2BC時,連接OB、OC,∵點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,OB=OC,∴△OBC為等邊三角形,OB=OC=BC=2,OA1⊥BC于點(diǎn)D,∴CD=1,OD==,∴S△A2BC=BCA2D ==,由上可得,△ABC的面積為或,故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別是(﹣1,0)和(2,0),以OC為直徑作圓⊙P,AB切⊙P于點(diǎn)B,交y軸于點(diǎn)E.點(diǎn)M是劣弧上一動點(diǎn),CM交BP于點(diǎn)N,BM交x軸于點(diǎn)D.
(1)求點(diǎn)E的坐標(biāo);
(2)當(dāng)點(diǎn)M在弧BO上運(yùn)動時,PD﹣PN的值是否變化?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體.一只螞蟻要從該幾何體的頂點(diǎn)A處,沿著幾何體的表面到幾何體上和A相對的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長是 分米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,對角線,交于點(diǎn),是上任意一點(diǎn),連接并延長,交于點(diǎn),連接,.
(1)求證:四邊形是平行四邊形;
(2)若,,.求出的邊上的高的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,,點(diǎn),在軸上方,且四邊形的面積為32,
(1)若四邊形是菱形,求點(diǎn)的坐標(biāo).
(2)若四邊形是平行四邊形,如圖1,點(diǎn),分別為,的中點(diǎn),且,求的值.
(3)若四邊形是矩形,如圖2,點(diǎn)為對角線上的動點(diǎn),為邊上的動點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:
①2a+b=0;
②當(dāng)﹣1≤x≤3時,y<0;
③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2
④9a+3b+c=0
其中正確的是( 。
A. ①②④ B. ①②③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①abc>0,
②a﹣b+c<0,
③2a=b,
④4a+2b+c>0,
⑤若點(diǎn)(﹣2,)和(,)在該圖象上,則.
其中正確的結(jié)論是 (填入正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某船自西向東航行,在處測得某島在北偏東的方向上,前進(jìn)海里后到達(dá),此時,測得海島在北偏東的方向上,要使船與海島最近,則船應(yīng)繼續(xù)向東前進(jìn)________海里.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com