【題目】隨著“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛(ài),某數(shù)學(xué)興趣小組隨機(jī)調(diào)查了我區(qū)50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | 0.16 |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | a |
12000≤x<16000 | b | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | 2 | 0.04 |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)寫(xiě)出a,b的值并補(bǔ)全頻數(shù)分布直方圖;
(2)我市約有5000名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過(guò)16000步(包含16000步)的兩名教師與大家分享心得,用樹(shù)形圖或列表法求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
【答案】(1)0.24,10,補(bǔ)全頻數(shù)分布直方圖見(jiàn)解析;(2)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有1500名;(3)
【解析】
(1)根據(jù)頻率=頻數(shù)÷總數(shù)可得a、b的值;
(2)用總?cè)藬?shù)乘以樣本中第4、5、6組的頻率之和即可;
(3)步數(shù)超過(guò)16000步(包含16000步)的三名教師用A、B、C表示,步數(shù)超過(guò)20000步(包含20000步)的兩名教師用a、b表示,畫(huà)樹(shù)狀圖列出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計(jì)算可得.
解:(1)a=12÷50=0.24,b=50×0.2=10,
補(bǔ)全頻數(shù)分布直方圖如下:
(2)5000×(0.2+0.06+0.04)=1500,
答:估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有1500名;
(3)步數(shù)超過(guò)16000步(包含16000步)的三名教師用A、B、C表示,步數(shù)超過(guò)20000步(包含20000步)的兩名教師用a、b表示,
畫(huà)樹(shù)狀圖為:
共有20種等可能的結(jié)果數(shù),其中被選取的兩名教師恰好都在20000步(包含20000步)以上的結(jié)果數(shù)為2,
所以被選取的兩名教師恰好都在20000步(包含20000步)以上的概率==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是邊BC的中點(diǎn),連接AE、DE,分別交BD、AC于點(diǎn)P、Q,過(guò)點(diǎn)P作PF⊥AE交CB的延長(zhǎng)線(xiàn)于F,下列結(jié)論:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=AO,
④若四邊形OPEQ的面積為4,則該正方形ABCD的面積為36,
⑤CEEF=EQDE.
其中正確的結(jié)論有( )
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)為矩形對(duì)角線(xiàn)上一點(diǎn),過(guò)點(diǎn)作,分別交、于點(diǎn)、.若,,的面積為,的面積為,則________;
(2)如圖2,點(diǎn)為內(nèi)一點(diǎn)(點(diǎn)不在上),點(diǎn)、、、分別為各邊的中點(diǎn).設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(3)如圖3,點(diǎn)為內(nèi)一點(diǎn)(點(diǎn)不在上)過(guò)點(diǎn)作,,與各邊分別相交于點(diǎn)、、、.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(4)如圖4,點(diǎn)、、、把四等分.請(qǐng)你在圓內(nèi)選一點(diǎn)(點(diǎn)不在、上),設(shè)、、圍成的封閉圖形的面積為,、、圍成的封閉圖形的面積為,的面積為,的面積為.根據(jù)你選的點(diǎn)的位置,直接寫(xiě)出一個(gè)含有、、、的等式(寫(xiě)出一種情況即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)與軸相交于、,交軸于點(diǎn),點(diǎn)拋物線(xiàn)的頂點(diǎn),對(duì)稱(chēng)軸與軸交于點(diǎn).
⑴.求拋物線(xiàn)的解析式;
⑵.如圖1,連接,點(diǎn)是線(xiàn)段上方拋物線(xiàn)上的一動(dòng)點(diǎn),于點(diǎn);過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn).點(diǎn)是軸上一動(dòng)點(diǎn),當(dāng) 取最大值時(shí).
①.求的最小值;
②.如圖2,點(diǎn)是軸上一動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)L1:(常數(shù)t>0)與軸的負(fù)半軸交于點(diǎn)G,頂點(diǎn)為Q,過(guò)Q作QM⊥軸交軸于點(diǎn)M,交雙曲線(xiàn)L2:于點(diǎn)P,且OG·MP=4.
(1)求值;
(2)當(dāng)t=2時(shí),求PQ的長(zhǎng);
(3)當(dāng)P是QM的中點(diǎn)時(shí),求t的值;
(4)拋物線(xiàn)L1與拋物線(xiàn)L2所圍成的區(qū)域(不含標(biāo)界)內(nèi)整點(diǎn)(點(diǎn)的橫、縱坐標(biāo)都是整數(shù))的個(gè)數(shù)有且只有1個(gè),直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過(guò)A點(diǎn)的切線(xiàn)AP與BC的延長(zhǎng)線(xiàn)交于點(diǎn)P,∠APB的平分線(xiàn)分別交AB,AC于點(diǎn)D,E,其中AE,BD(AE<BD)的長(zhǎng)是一元二次方程x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根.
(1)求證:PABD=PBAE;
(2)在線(xiàn)段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請(qǐng)給予證明,并求其面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字、1、2,它們除了數(shù)字不同外,其它都完全相同.
(1)隨機(jī)地從布袋中摸出一個(gè)小球,求摸出的球?yàn)闃?biāo)有數(shù)字1的小球的概率.
(2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請(qǐng)用樹(shù)狀圖或表格列出、的所有可能的值,并求出直線(xiàn)不經(jīng)過(guò)第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,∠ABD=60°,點(diǎn)E從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊AB運(yùn)動(dòng),到點(diǎn)B停止運(yùn)動(dòng).過(guò)點(diǎn)E作EF∥BD交AD于點(diǎn)F,將△AEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)得到△GEH,且點(diǎn)G落在線(xiàn)段EF上,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒)(0<t<3).
(1)若t=1,求△GEH的面積;
(2)若點(diǎn)G在∠ABD的平分線(xiàn)上,求BE的長(zhǎng);
(3)設(shè)△GEH與△ABD重疊部分的面積為T,用含t的式子表示T,并直接寫(xiě)出當(dāng)0<t<3時(shí)T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=45°,BC=4,BC邊上的高AD=1,點(diǎn)P1、Q1、H1分別在邊AD、AC、CD上,且四邊形P1Q1H1D為正方形,點(diǎn)P2、Q2、H2分別在邊Q1H1、CQ1、CH1上,且四邊形P2Q2H2H1為正方形,…,按此規(guī)律操作下去,則線(xiàn)段CQ2020的長(zhǎng)度為________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com