【題目】如圖,點(diǎn)E,CBF上,,,

求證:

ACDEM,且,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)到AB上的G處,求旋轉(zhuǎn)角的度數(shù).

【答案】(1)見(jiàn)解析;(2)15°.

【解析】

(1)通過(guò)證明△ABC≌△DEF即可得出AB=DE.

(2)要求角的度數(shù)就要解直角三角形,根據(jù)特殊角的三角函數(shù)值來(lái)計(jì)算.

(1)證明:∵BE=FC,

∴BC=EF,

又∵∠ABC=∠DEF,∠A=∠D,

∴△ABC≌△DEF,

∴AB=DE.

(2)解:∵∠DEF=∠B=45°,

∴DE∥AB,

∴∠CME=∠A=90°,

∴AC=AB= ,MC=ME= ,

∴在Rt△MEC中,EC===2,

∴CG=CE=2,

Rt△CAG中,cos∠ACG==

∴∠ACG=30°,

∴∠ECG=∠ACB-∠ACG=45°-30°=15°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用“<”“>”或“=”號(hào)填空:

(1)﹣_____

(2)﹣(﹣0.01)_____ (﹣2;

(3)3.9950(精確到0.01)_____3.999.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩盞路燈桿相距20米,一天晚上,當(dāng)小明從燈甲底部向燈乙底部直行16米時(shí),發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為(
A.7米
B.8米
C.9米
D.10米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BC= ,AD= ,CD=12,過(guò)AB的中點(diǎn)E作AB的垂線交BC的延長(zhǎng)線于F.
(1)求BF的長(zhǎng);
(2)如圖2,以點(diǎn)C為原點(diǎn),建立平面直角坐標(biāo)系,請(qǐng)通過(guò)計(jì)算判斷,過(guò)E點(diǎn)的反比例函數(shù)圖象與直線AB是否還有另一個(gè)交點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=nAD,點(diǎn)E,F(xiàn)分別在邊AB,AD上且不與頂點(diǎn)A,B,D重合,∠AEF=∠BCE,圈O過(guò)A,E,F(xiàn)三點(diǎn).
(1)求證:圈O與CE相切與點(diǎn)E;
(2)如圖1,若AF=2FD且∠AEF=30°,求n的值;
(3)如圖2.若EF=EC且圈O與邊CD相切,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(2,0),B(1,m2﹣4m+5).

(1)直接判斷△ABO是什么圖形;
(2)如果SABO有最小值,求m的值;
(3)拋物線y=﹣(x﹣2)(x﹣n)經(jīng)過(guò)點(diǎn)B且與y軸交于點(diǎn)C,與x軸交于兩點(diǎn)A,D.
①用含m的式子表示點(diǎn)C和點(diǎn)D坐標(biāo);
②點(diǎn)P是拋物線上x軸上方任一點(diǎn),PQ∥BD交x軸于點(diǎn)Q,將△ABO向左平移到△A′B′O′,點(diǎn)A,B,O的對(duì)應(yīng)點(diǎn)分別是A′,B′,O′,當(dāng)點(diǎn)A'與點(diǎn)D重合時(shí),點(diǎn)B'在線段PQ上,如果點(diǎn)P恰好是拋物線頂點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠BADBC于點(diǎn)E.

(1)作CF平分∠BCDAD于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2)在(1)的條件下,求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C,給出如下定義:
如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1 , A2B2C2D2 , AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.


(1)已知A( 2,3),B(5,0),C( , 2).
①當(dāng) 時(shí),點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為;
②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為;
(2)已知點(diǎn)D(1,1),點(diǎn)E( ),其中點(diǎn)E是函數(shù) 的圖像上一點(diǎn),⊙P是點(diǎn)O,D,E的一個(gè)面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案