【題目】甲、乙兩家藍莓采摘園的草莓品質相同,銷售價格都是每千克30元,“五一”假期,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園購買60元的門票,采摘的藍莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘的藍莓超過10千克后,超過部分五折優(yōu)惠,優(yōu)惠期間,設某游客的藍莓采摘量為(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元).
(1)當采摘量超過10千克時,求與的關系式;
(2)若要采摘40千克藍莓,去哪家比較合算?請計算說明.
科目:初中數(shù)學 來源: 題型:
【題目】在結束了380課時初中階段數(shù)學內容的教學后,唐老師計劃安排60課時用于總復習,根據(jù)數(shù)學內容所占課時比例,繪制如下統(tǒng)計圖表(圖1~圖3),請根據(jù)圖表提供的信息,回答下列問題:
(1)圖1中“統(tǒng)計與概率”所在扇形的圓心角為 度;
(2)圖2、3中的a= ,b= ;
(3)在60課時的總復習中,唐老師應安排多少課時復習“數(shù)與代數(shù)”內容?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線點在直線上,點在直線上,點在直線之間,.
(1)如圖1,若,求的度數(shù);
(2)如圖2,平分平分,比較的大小;
(3)如圖3,點是線段上一點,平分平分,探究和的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織了主題為“讓勤儉節(jié)約成為時尚”的電子小組作品征集活動,現(xiàn)從中隨機抽取部分作品,按A,B,C,D四個等級進行評價,并根據(jù)結果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)求抽取了多少份作品;
(2)此次抽取的作品中等級為B的作品有 ,并補全條形統(tǒng)計圖;
(3)若該校共征集到800份作品,請估計等級為A的作品約有多少份.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側同時施工.為了使山的另一側的開挖點C在AB的延長線上,設想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經(jīng)過),與L相交于D點,經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(≈1.414,精確到1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點,△PBC與△ABC和△DBC的面積之間有什么關系?探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
當AP=AD時(如圖2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣S△ABD﹣S△CDA,
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)當AP=AD時,探求S△PBC與S△ABC和S△DBC之間的關系式并證明;
(2)當AP=AD時,S△PBC與S△ABC和S△DBC之間的關系式為: ;
(3)一般地,當AP=AD(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關系為: ;
(4)當AP=AD(0≤≤1)時,S△PBC與S△ABC和S△DBC之間的關系式為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( )
A.7
B.8
C.7
D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗手中有塊長方形的硬紙片,其中長比寬多10cm,長方形的周長是100cm.
(1)求長方形的面積.
(2)現(xiàn)小麗想用這塊長方形的硬紙片,沿著邊的方向裁出一塊長與寬的比為5:4,面積為520cm2的新紙片作為他用.試判斷小麗能否成功,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,求大樓AB的高度是多少?(精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com