【題目】如圖,東湖隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)OA為12 m,寬OB為4 m,隧道頂端D到路面的距離為10 m,建立如圖所示的直角坐標(biāo)系.
(1)求該拋物線的表達(dá)式;
(2)一輛貨車載有一個(gè)長(zhǎng)方體集裝箱,集裝箱最高處與地面距離為6 m,寬為4 m,隧道內(nèi)設(shè)雙向行車道,問這輛貨車能否安全通過?
(3)在拋物線形拱壁上需要安裝兩排離地面高度相等的燈,如果燈離地面的高度不超過8.5 m,那么這兩排燈的水平距離最小是多少米?
【答案】(1) y=- (x-6)2+10(2)這輛貨車能安全通過(3)兩排燈的水平距離最小是6 m.
【解析】試題分析:(1)設(shè)出拋物線的解析式,根據(jù)拋物線頂點(diǎn)坐標(biāo),代入解析式;
(2)令x=10,求出y與6作比較;
(3)求出y=8.5時(shí)x的值即可得.
試題解析:(1)根據(jù)題意,該拋物線的頂點(diǎn)坐標(biāo)為(6,10),設(shè)拋物線的表達(dá)式為
y=a(x-6)2+10,將點(diǎn)B(0,4)代入,得36a+10=4,解得a=-.
故該拋物線的表達(dá)式為y=- (x-6)2+10.
(2)根據(jù)題意,當(dāng)x=6+4=10時(shí),y=-×16+10=>6,∴這輛貨車能安全通過.
(3)當(dāng)y=8.5時(shí),有- (x-6)2+10=8.5,解得x1=3,x2=9,∴x2-x1=6.
答:兩排燈的水平距離最小是6 m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租車司機(jī)從公司出發(fā),在東西方向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向東為正,向西為負(fù),單位:km):
(1)接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?
(2)若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?
(3)若該出租車的計(jì)價(jià)標(biāo)準(zhǔn)為:行駛路程不超過3km收費(fèi)10元,超過3km的部分按每千米加1.8元收費(fèi),在這過程中該駕駛員共收到車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題:
(1)7+136+20;
(2)(49)(+91)(5)+(9);
(3) ;
(4) ;
(5)-1100-(1- 0.5)×[3-(-3)2];
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對(duì)應(yīng)點(diǎn)D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)
(2)
(3)﹣32×4﹣(﹣5)×7﹣(﹣2)3
(4)(﹣1)2018+|﹣5|×(﹣)﹣(﹣4)2÷(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對(duì)邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇同學(xué)的思路寫出證明過程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點(diǎn)D,E,過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)分別延長(zhǎng)CB,F(xiàn)D,相交于點(diǎn)G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.
(1)求出∠AOB及其補(bǔ)角的度數(shù);
(2)①請(qǐng)求出∠DOC和∠AOE的度數(shù);
②判斷∠DOE與∠AOB是否互補(bǔ),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
閱讀材料:
數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對(duì)值表示;
在數(shù)軸上,有理數(shù)3與1對(duì)應(yīng)的兩點(diǎn)之間的距離為|3﹣1|=2;
在數(shù)軸上,有理數(shù)5與﹣2對(duì)應(yīng)的兩點(diǎn)之間的距離為|5﹣(﹣2)|=7;
在數(shù)軸上,有理數(shù)﹣2與3對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣2﹣3|=5;
在數(shù)軸上,有理數(shù)﹣8與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣8﹣(﹣5)|=3;……
如圖1,在數(shù)軸上有理數(shù)a對(duì)應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對(duì)應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|a﹣b|或|b﹣a|,記為|AB|=|a﹣b|=|b﹣a|.
解決問題:
(1)數(shù)軸上有理數(shù)﹣10與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離等于 ;數(shù)軸上有理數(shù)x與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為 ;若數(shù)軸上有理數(shù)x與﹣1對(duì)應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于 ;
聯(lián)系拓廣:
(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為﹣2,動(dòng)點(diǎn)P表示的數(shù)為x.
請(qǐng)從A,B兩題中任選一題作答,我選擇 題.
A.①若點(diǎn)P在點(diǎn)M,N兩點(diǎn)之間,則|PM|+|PN|= ;
②若|PM|=2|PN|,即點(diǎn)P到點(diǎn)M的距離等于點(diǎn)P到點(diǎn)N的距離的2倍,則x等于 .
B.①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x﹣4|= ;
若|x+2|+|x﹣4|═10,則x= ;
②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com