【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點(diǎn),以CD為直徑的⊙O交BC于點(diǎn)E,連接AE交CD于點(diǎn)P,交⊙O于點(diǎn)F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若PF:PC=1:2,AF=5,求CP的長(zhǎng).
【答案】
(1)解:AB是⊙O切線.
理由:連接DE、CF.
∵CD是直徑,
∴∠DEC=∠DFC=90°,
∵∠ACB=90°,
∴∠DEC+∠ACE=180°,
∴DE∥AC,
∴∠DEA=∠EAC=∠DCF,
∵∠DFC=90°,
∴∠FCD+∠CDF=90°,
∵∠ADF=∠EAC=∠DCF,
∴∠ADF+∠CDF=90°,
∴∠ADC=90°,
∴CD⊥AD,
∴AB是⊙O切線
(2)解:∵∠CPF=∠CPA,∠PCF=∠PAC,
∴△PCF∽△PAC,
∴ ,
∴PC2=PFPA,設(shè)PF=a.則PC=2a,
∴4a2=a(a+5),
∴a= ,
∴PC=2a=
【解析】(1)結(jié)論:AB是⊙O切線,連接DE,CF,由∠FCD+∠CDF=90°,只要證明∠ADF=∠DCF即可解決問(wèn)題.(2)只要證明△PCF∽△PAC,得 ,設(shè)PF=a.則PC=2a,列出方程即可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,點(diǎn)G、E、F分別在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解全校學(xué)生上學(xué)期參加社區(qū)活動(dòng)的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動(dòng)的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下: 參加社區(qū)活動(dòng)次數(shù)的頻數(shù)、頻率分布表
活動(dòng)次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問(wèn)題:
(1)表中a= , b=;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整(畫(huà)圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1200名學(xué)生,請(qǐng)估計(jì)該校在上學(xué)期參加社區(qū)活動(dòng)超過(guò)6次的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=x2﹣2x﹣3的圖象如圖所示,若線段AB在x軸上,且AB為2 個(gè)單位長(zhǎng)度,以AB為邊作等邊△ABC,使點(diǎn)C落在該函數(shù)y軸右側(cè)的圖象上,則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的扇形紙片半徑為5cm,用它圍成一個(gè)圓錐的側(cè)面,該圓錐的高是4cm,則該圓錐的底面周長(zhǎng)是( )
A.3πcm
B.4πcm
C.5πcm
D.6πcm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(guò)(﹣1,m2+2m+1)、(0,m2+2m+2)兩點(diǎn),其中m為常數(shù).
(1)求b的值,并用含m的代數(shù)式表示c;
(2)若拋物線y=x2+bx+c與x軸有公共點(diǎn),求m的值;
(3)設(shè)(a,y1)、(a+2,y2)是拋物線y=x2+bx+c上的兩點(diǎn),請(qǐng)比較y2﹣y1與0的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛貨車(chē)從甲地勻速駛往乙地,到達(dá)后用了半小時(shí)卸貨,隨即勻速返回,已知貨車(chē)返回的速度是它從甲地駛往乙地的速度的1.5倍.貨車(chē)離甲地的距離y(千米)關(guān)于時(shí)間x(小時(shí))的函數(shù)圖象如圖所示.則a=(小時(shí)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將透明三角形紙片PAB的直角頂點(diǎn)P落在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)y= 圖象的兩支上,且PB⊥x于點(diǎn)C,PA⊥y于點(diǎn)D,AB分別與x軸,y軸相交于點(diǎn)E、F.已知B(1,3).
(1)k=;
(2)試說(shuō)明AE=BF;
(3)當(dāng)四邊形ABCD的面積為 時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com