【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D時(shí)拋物線的頂點(diǎn)
(1)求拋物線的解析式和直線的解析式;
(2)試探究:在拋物線上是否存在點(diǎn)P,使得以點(diǎn)為頂點(diǎn),為直角邊的三角形是直角三角形,若存在,請(qǐng)求出,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);直線AC的方程為;(2)存在,點(diǎn)P的坐標(biāo)為或.
【解析】
(1)根據(jù)拋物線與的交點(diǎn)坐標(biāo),設(shè)拋物線的解析式為,化簡(jiǎn)得,與原題的解析式對(duì)比,易得,解出a的值,代入所設(shè)解析式即可得拋物線解析式;
根據(jù)拋物線與軸交于點(diǎn)C,可求得,設(shè)直線AC的解析式為,把A、C的坐標(biāo)代入可求出,從而即可求得直線AC的解析式;
(2)分兩種情況求解:①過(guò)點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P,則直線PC的解析式為,再聯(lián)立,可求得交點(diǎn)P的坐標(biāo)為;
②過(guò)點(diǎn)A作AC的垂線交拋物線于點(diǎn)P,則可得所以直線PC的解析式為,聯(lián)立,可求得點(diǎn)P的坐標(biāo)為.
解:(1)設(shè)拋物線的解析式為,
,
∵,
,
∴,
所以拋物線的解析式為;
當(dāng)時(shí), ,
∴;
設(shè)直線AC的解析式為,
把代入, ,
所以,
所以直線AC的方程為;
(2)存在;理由如下:
①過(guò)點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P,
∵直線AC的方程為,
∴直線PC的解析式為,
解方程組:,
解得:或,
此時(shí)點(diǎn)P的坐標(biāo)為;
②過(guò)點(diǎn)A作AC的垂線交拋物線于點(diǎn)P,
直線PC的解析式為,
把代入得,
所以直線PC的解析式為,
解方程組:,
解得:或,
所以點(diǎn)P的坐標(biāo)為.
綜上所述,符合條件的點(diǎn)P的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點(diǎn)P、M.對(duì)于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( )
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數(shù)為( 。
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的菱形ABCD中,對(duì)角線AC,BD交點(diǎn)與點(diǎn)O,點(diǎn)P是△ADO的重心.
(1)當(dāng)菱形ABCD是正方形時(shí),則PA=________,PD=__________,PO=_________.
(2)線段PA,PD,PO中是否存在長(zhǎng)度保持不變的線段,若存在,請(qǐng)求出該線段的長(zhǎng)度,若不存在,請(qǐng)說(shuō)明理由.
(3)求線段PD,DO滿足的等量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等腰直角三角形,,.折疊該紙片,使點(diǎn)落在線段上,折痕與邊交于點(diǎn),與邊交于點(diǎn).
(1)若折疊后使點(diǎn)與點(diǎn)重合,此時(shí)__________;
(2)若折疊后使點(diǎn)與邊的中點(diǎn)重合,求的長(zhǎng)度;
(3)若折疊后點(diǎn)落在邊上的點(diǎn)為,且使,求此時(shí)的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公共汽車線路每天運(yùn)營(yíng)毛利潤(rùn)(萬(wàn)元)與乘客量(萬(wàn)人)成一次函數(shù)關(guān)系,其圖象如圖所示.目前通過(guò)監(jiān)測(cè)發(fā)現(xiàn)每天平均乘客量為0.6萬(wàn)人次,由于運(yùn)營(yíng)成本較高,這條線路處于虧損狀態(tài).(毛利潤(rùn)=票價(jià)總收入一運(yùn)營(yíng)成本)
(1)求該線路公共汽車的單程票價(jià)和每天運(yùn)營(yíng)成本分別為多少元.
(2)公交公司為了扭虧,若要使每天運(yùn)營(yíng)毛利潤(rùn)在0.2~0.4萬(wàn)元之間(包括0.2和0.4),求平均每天的乘客量的范圍.
(3)據(jù)實(shí)際情況,發(fā)現(xiàn)該線路乘客量穩(wěn)定,公交公司決定適當(dāng)提高票價(jià),當(dāng)單程票價(jià)每提高1元時(shí),每天平均乘客量相應(yīng)減少0.05萬(wàn)人次,設(shè)這條線路的單程票價(jià)提高元().當(dāng)為何值時(shí),該線路每天運(yùn)營(yíng)總利潤(rùn)最大,并求出最大的總利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,∠BCD=120°,A為的中點(diǎn),延長(zhǎng)BA到點(diǎn)P,使BA=AP,連接PE.
(1)求線段BD的長(zhǎng);
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com