如圖,在等腰梯形ABCD中,AB∥CD,AC、BD是對角線.將△ABD沿AB向下翻折到△AEB的位置.則四邊形AEBC的形狀為
平行四邊形
平行四邊形
;若AD=6,BD=8,AB=10,則四邊形AEBC的形狀為
矩形
矩形
分析:根據(jù)平行四邊形的判定定理可得四邊形AEBC是平行四邊形;利用勾股定理的逆定理判斷出△ABD是直角三角形,∠ADB=90°,繼而可得∠E=90°,根據(jù)矩形的判定可得四邊形AEBC的形狀.
解答:解:∵四邊形ABCD是等腰梯形,
∵AD=BC,AC=BD,
由翻折變換的性質(zhì)可知:AD=AE,BD=BE,
∴AE=BC,AC=BE,
∴四邊形AEBC是平行四邊形.
在△ABC中,∵AD=6,BD=8,AB=10,
∴AB2=AD2+BD2,
∴△ABC是直角三角形,∠ADB=90°,
∴∠E=90°,
∴四邊形AEBC是矩形.
故答案為:平行四邊形,矩形.
點評:本題考查了等腰梯形的性質(zhì)、矩形及平行四邊形的判定,解答本題注意掌握等腰梯形的對角線相等,兩腰相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設(shè)P、Q同時出發(fā)并運動了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案