【題目】如圖①,中,,是的中點(diǎn),過點(diǎn)作于點(diǎn);過點(diǎn)作,交的延長線于點(diǎn).
(1)求證:;
(2)某數(shù)學(xué)興趣小組解答(1)后發(fā)現(xiàn),在圖中只需將剪下來拼到處,就可得到一個與等面積的矩形繼續(xù)討論后又發(fā)現(xiàn),任意三角形也可以剪拼成一個等面積的矩形,請你在圖②中畫出一種剪拼示意圖,并簡要說明作法(不需要證明)
【答案】(1)見解析;(2)如圖見解析.
【解析】
(1)利用AAS即可證明;
(2)找AC、BC的中點(diǎn),構(gòu)造以AB為邊的矩形即可.
找AC、AB的中點(diǎn),構(gòu)造以BC為邊的矩形即可.
找AB、BC的中點(diǎn),構(gòu)造以AC為邊的矩形即可.
(1)證明:∵,,是的中點(diǎn),
∴,,
∵,即.
(2)如圖:方法比較多
作法① :找AC、BC的中點(diǎn),作垂線,構(gòu)造以AB為邊的矩形即可.
作法②:找AC、AB的中點(diǎn),作垂線,構(gòu)造以BC為邊的矩形即可.
作法③:找AB、BC的中點(diǎn),作垂線,構(gòu)造以AC為邊的矩形即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷售,那么一個月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5元,銷售量相應(yīng)減少20套,設(shè)銷售單價(jià)為x(x60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時,且銷售額為14000元?
(3)當(dāng)銷售單價(jià)為多少元時,才能在一個月內(nèi)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系x0y中,直線與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線:過A、B兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)C.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)如圖2,作拋物線,使得拋物線與恰好關(guān)于原點(diǎn)對稱,與在第一象限內(nèi)交于點(diǎn)D,連接AD,CD.
①請直接寫出拋物線的解析式和點(diǎn)D的坐標(biāo);
②求四邊形AOCD的面積;
(3)已知拋物線,的頂點(diǎn)為M,設(shè)P為拋物線對稱軸上一點(diǎn),Q為直線上一點(diǎn),是否存在以點(diǎn)M,Q,P,B為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn)
(1)求證:△ABM≌△DCM
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB= _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)過點(diǎn),直線與軸交于點(diǎn),過點(diǎn)作軸的垂線交反比例函數(shù)圖象于點(diǎn).
(1)求的值與點(diǎn)的坐標(biāo);
(2)在平面內(nèi)有點(diǎn),使得以,,,四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,試寫出符合條件的所有點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校的圍墻上端由- -段段相同的凹曲拱形柵欄組成,如圖所示,柵欄的跨徑間,按相同的間距米用根立柱加固,拱高為米,以為原點(diǎn),所在的直線為軸建立平面直角坐標(biāo)系,根據(jù)以上的數(shù)據(jù),則這段柵欄所需立柱的總長度(精確到米)為( )
A. 米B. 米C. 米D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(k+1)x+k2+1=0
(1) 當(dāng)k取何值方程有兩個實(shí)數(shù)根
(2) 是否存在k值使方程的兩根為一個矩形的兩鄰邊長,且矩形的對角線長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小南利用幾何畫板畫圖,探索結(jié)論,他先畫∠MAN=90°,在射線AM上取一點(diǎn)B,在射線AN上取一點(diǎn)C,連接BC,再作點(diǎn)A關(guān)于直線BC的對稱點(diǎn)D,連接AD、BD,得到如圖所示圖形,移動點(diǎn)C,小南發(fā)現(xiàn):當(dāng)AD=BC時,∠ABD=90°;請你繼續(xù)探索;當(dāng)2AD=BC時,∠ABD的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)
(1)根據(jù)題意,填寫下表:
時間x(h) 與A地的距離 | 0.5 | 1.8 | _____ |
甲與A地的距離(km) | 5 |
| 20 |
乙與A地的距離(km) | 0 | 12 |
|
(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;
(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com