【題目】如圖,反比例函數(shù)過點,直線與軸交于點,過點作軸的垂線交反比例函數(shù)圖象于點.
(1)求的值與點的坐標(biāo);
(2)在平面內(nèi)有點,使得以,,,四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有點的坐標(biāo).
【答案】(1)k=24,B(8,3);(2)D點的坐標(biāo)為(4,9),(4,3),(12,3).
【解析】
(1)將A的坐標(biāo)代入即可求出k的值,點B的橫坐標(biāo)為6,代入求出點B的坐標(biāo),
(2)分情況討論,分別求出相應(yīng)的點D的坐標(biāo)即可.
解:(1)把A(4,6)代入得:k=24,
當(dāng)x=8時,y=24÷8=3,
∴點 B(8,3);
(2)由題意得:A(4,6),B(8,3)、C(8,0),BC=3,
①過A作BC的平行線,在這條平行線上截取AD1=BC,AD2=BC,
此時D1(4,9),D2(4,3);
②過點C作AB的平行線與過B作AC的平行線相交于D3,
過點A作AM⊥BC,垂足為M,過D3作D3N⊥BC,垂足為N,
∵ABCD3是平行四邊形,
∴AC=BD3,∠ACM=∠D3BN,
∴△ACM≌△D3BN,
∴D3N=AM=4,CM=BN=6,
∴D3的橫坐標(biāo)為12,CN=3,
∴D3(12,3),
∴符合條件的所有D點的坐標(biāo)為(4,9),(4,3),(12,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一元二次方程ax2+bx+c=0(a≠0),下列說法:①a+c=0,方程ax2+bx+c=0,有兩個不相等的實數(shù);②若方程ax2+bx+c=0有兩個不相等的實根.則方程cx2+bx+a=0也一定有兩個不相等的實根;③若c是方程ax2+bx+c=0的一個根,則一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一個根,則一定有b2-4ac=(2am+b)2成立,其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y=2x+b與這個新圖象有3個公共點,則b的值為( 。
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為8cm2,且其對角線相交于點O,點O是正方形A′B′C′O的一個頂點,如果兩個正方形的邊長相等,那么正方形A′B′C′O繞點O無論怎樣轉(zhuǎn)動,兩個正方形重疊部分的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,中,,是的中點,過點作于點;過點作,交的延長線于點.
(1)求證:;
(2)某數(shù)學(xué)興趣小組解答(1)后發(fā)現(xiàn),在圖中只需將剪下來拼到處,就可得到一個與等面積的矩形繼續(xù)討論后又發(fā)現(xiàn),任意三角形也可以剪拼成一個等面積的矩形,請你在圖②中畫出一種剪拼示意圖,并簡要說明作法(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=-+bx+c經(jīng)過A(-1,0)、B(5,0)兩點,頂點為P.
求:(1)求b,c的值;
(2)求△ABP的面積;
(3)若點C(,)和點D(,)在該拋物線上,則當(dāng)時,請寫出與的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點D是BC的中點作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點D逆時針方向旋轉(zhuǎn),
判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;
若,當(dāng)AE取最大值時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線上依次擺放著七個正方形(如圖所示),已知斜放置的三個正方形的面積分別是1、2、3,正放置的四個正方形的面積依次是,則_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com