【題目】如圖,反比例函數(shù)過點,直線軸交于點,過點軸的垂線交反比例函數(shù)圖象于點.

1)求的值與點的坐標(biāo);

2)在平面內(nèi)有點,使得以,四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有點的坐標(biāo).

【答案】1k24,B8,3);(2D點的坐標(biāo)為(4,9),(4,3),(12,3.

【解析】

1)將A的坐標(biāo)代入即可求出k的值,點B的橫坐標(biāo)為6,代入求出點B的坐標(biāo),

2)分情況討論,分別求出相應(yīng)的點D的坐標(biāo)即可.

解:(1)把A46)代入得:k24,

當(dāng)x8時,y24÷83,

∴點 B8,3);

2)由題意得:A4,6),B83)、C8,0),BC3,

①過ABC的平行線,在這條平行線上截取AD1BC,AD2BC,

此時D14,9),D243);

②過點CAB的平行線與過BAC的平行線相交于D3,

過點AAMBC,垂足為M,過D3D3NBC,垂足為N,

ABCD3是平行四邊形,

ACBD3,∠ACM=∠D3BN,

∴△ACM≌△D3BN,

D3NAM4CMBN6,

D3的橫坐標(biāo)為12CN3,

D3123),

∴符合條件的所有D點的坐標(biāo)為(4,9),(4,3),(12,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一元二次方程ax2+bx+c=0a0),下列說法:①a+c=0,方程ax2+bx+c=0,有兩個不相等的實數(shù);②若方程ax2+bx+c=0有兩個不相等的實根.則方程cx2+bx+a=0也一定有兩個不相等的實根;③若c是方程ax2+bx+c=0的一個根,則一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一個根,則一定有b2-4ac=(2am+b2成立,其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將二次函數(shù)yx25x6x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y2x+b與這個新圖象有3個公共點,則b的值為( 。

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為8cm2,且其對角線相交于點O,點O是正方形ABCO的一個頂點,如果兩個正方形的邊長相等,那么正方形ABCO繞點O無論怎樣轉(zhuǎn)動,兩個正方形重疊部分的面積為_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,中,,的中點,過點于點;過點,交的延長線于點.

1)求證:;

2)某數(shù)學(xué)興趣小組解答(1)后發(fā)現(xiàn),在圖中只需將剪下來拼到處,就可得到一個與等面積的矩形繼續(xù)討論后又發(fā)現(xiàn),任意三角形也可以剪拼成一個等面積的矩形,請你在圖②中畫出一種剪拼示意圖,并簡要說明作法(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=-+bx+c經(jīng)過A(-1,0)、B(5,0)兩點,頂點為P.

求:(1)求b,c的值;

(2)求△ABP的面積;

(3)若點C(,)和點D()在該拋物線上,則當(dāng)時,請寫出的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點DBC的中點作正方形DEFG,使點AC分別在DGDE上,連接AEBG

試猜想線段BGAE的數(shù)量關(guān)系是______;

將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)

判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線上依次擺放著七個正方形(如圖所示),已知斜放置的三個正方形的面積分別是1、23,正放置的四個正方形的面積依次是,_______.

查看答案和解析>>

同步練習(xí)冊答案