【題目】如圖,拋物線(xiàn)l:y= (x﹣h)2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將拋物線(xiàn)ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)的圖象.
(1)若點(diǎn)A的坐標(biāo)為(1,0).
①求拋物線(xiàn)l的表達(dá)式,并直接寫(xiě)出當(dāng)x為何值時(shí),函數(shù)的值y隨x的增大而增大;
②如圖2,若過(guò)A點(diǎn)的直線(xiàn)交函數(shù)的圖象于另外兩點(diǎn)P,Q,且S△ABQ=2S△ABP , 求點(diǎn)P的坐標(biāo);
(2)當(dāng)2<x<3時(shí),若函數(shù)f的值隨x的增大而增大,直接寫(xiě)出h的取值范圍.
【答案】
(1)解:①把A(1,0)代入拋物線(xiàn)y= (x﹣h)2﹣2中得:
(x﹣h)2﹣2=0,
解得:h=3或h=﹣1,
∵點(diǎn)A在點(diǎn)B的左側(cè),
∴h>0,
∴h=3,
∴拋物線(xiàn)l的表達(dá)式為:y= (x﹣3)2﹣2,
∴拋物線(xiàn)的對(duì)稱(chēng)軸是:直線(xiàn)x=3,
由對(duì)稱(chēng)性得:B(5,0),
由圖象可知:當(dāng)1<x<3或x>5時(shí),函數(shù)的值y隨x的增大而增大;
②如圖2,作PD⊥x軸于點(diǎn)D,延長(zhǎng)PD交拋物線(xiàn)l于點(diǎn)F,作QE⊥x軸于E,則PD∥QE,
由對(duì)稱(chēng)性得:DF=PD,
∵S△ABQ=2S△ABP,
∴ ABQE=2× ABPD,
∴QE=2PD,
∵PD∥QE,
∴△PAD∽△QAE,
∴ ,
∴AE=2AD,
設(shè)AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[ (1+a﹣3)2﹣2]),
∵點(diǎn)F、Q在拋物線(xiàn)l上,
∴PD=DF=﹣[ (1+a﹣3)2﹣2],
QE= (1+2a﹣3)2﹣2,
∴ (1+2a﹣3)2﹣2=﹣2[ (1+a﹣3)2﹣2],
解得:a= 或a=0(舍),
∴P( , )
(2)解:當(dāng)y=0時(shí), (x﹣h)2﹣2=0,
解得:x=h+2或h﹣2,
∵點(diǎn)A在點(diǎn)B的左側(cè),且h>0,
∴A(h﹣2,0),B(h+2,0),
如圖3,作拋物線(xiàn)的對(duì)稱(chēng)軸交拋物線(xiàn)于點(diǎn)C,
分兩種情況:
①由圖象可知:圖象f在AC段時(shí),函數(shù)f的值隨x的增大而增大,
則 ,
∴3≤h≤4,
②由圖象可知:圖象f點(diǎn)B的右側(cè)時(shí),函數(shù)f的值隨x的增大而增大,
即:h+2≤2,
h≤0,
綜上所述,當(dāng)3≤h≤4或h≤0時(shí),函數(shù)f的值隨x的增大而增大.
【解析】(1)①利用待定系數(shù)法求拋物線(xiàn)的解析式,由對(duì)稱(chēng)性求點(diǎn)B的坐標(biāo),根據(jù)圖象寫(xiě)出函數(shù)的值y隨x的增大而增大(即呈上升趨勢(shì))的x的取值;②如圖2,作輔助線(xiàn),構(gòu)建對(duì)稱(chēng)點(diǎn)F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則 ,得AE=2AD,設(shè)AD=a,根據(jù)QE=2FD列方程可求得a的值,并計(jì)算P的坐標(biāo);(2)先令y=0求拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)坐標(biāo),根據(jù)圖象中呈上升趨勢(shì)的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示某公司“順風(fēng)車(chē)”與“快車(chē)”的行駛里程x(千米)與計(jì)費(fèi)y(元)之間的函數(shù)圖象.
(1)由圖象寫(xiě)出乘車(chē)?yán)锍虨?千米時(shí)選擇 (“順風(fēng)車(chē)”或“快車(chē)”)更便宜;
(2)當(dāng)x>5時(shí),順風(fēng)車(chē)的函數(shù)是y=x+,判斷乘車(chē),里程是8千米時(shí),選擇“順風(fēng)車(chē)”和“快車(chē)”哪個(gè)更便宜?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸上,AC與OB交于點(diǎn)D (8,4),反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)D.若將菱形OABC向左平移n個(gè)單位,使點(diǎn)C落在該反比例函數(shù)圖象上,則n的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BC∥GE,AF∥DE,點(diǎn)D在直線(xiàn)BC上,點(diǎn)F在直線(xiàn)GE上,且∠1=50°.
(1)求∠AFG的度數(shù);
(2)若AQ平分∠FAC,交直線(xiàn)BC于點(diǎn)Q,且∠Q=18°,則∠ACB的度數(shù)為______°.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C是不在同一條直線(xiàn)上的三點(diǎn),請(qǐng)按下列要求畫(huà)圖并作答(畫(huà)圖時(shí)工具不限,不需寫(xiě)出結(jié)論,只需畫(huà)出圖形、標(biāo)注字母):
(1)畫(huà)直線(xiàn)BC,連接AC;
(2)畫(huà)線(xiàn)段BC的中點(diǎn)D,連接AD;
(3)畫(huà)出∠ADC的平分線(xiàn)交AC于點(diǎn)E;
(4)若∠BDA=求∠ADC,∠EDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)O為直線(xiàn)AB上一點(diǎn),在直線(xiàn)AB上側(cè)任作一個(gè)∠COD,使得∠COD=90°.
(1)如圖1,過(guò)點(diǎn)O作射線(xiàn)OE,當(dāng)OE恰好為∠AOD的角平分線(xiàn)時(shí),請(qǐng)直接寫(xiě)出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ ∠COE(填一個(gè)數(shù)字);
(2)如圖2,過(guò)點(diǎn)O作射線(xiàn)OE,當(dāng)OC恰好為∠AOE的角平分線(xiàn)時(shí),另作射線(xiàn)OF,使得OF平分∠COD,求∠FOB+∠EOC的度數(shù);
(3)在(2)的條件下,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(1)∵∠A=_____(已知),
∴AC∥ED( )
(2)∵∠2=_____(已知),
∴AC∥ED( )
(3)∵∠A+_____=180°(已知),
∴AB∥FD( )
(4)∵AB∥_____(已知),
∴∠2+∠AED=180°( )
(5)∵AC∥_____(已知),
∴∠C=∠1( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時(shí)梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙二人共同計(jì)算2(a+x)(b+x),由于甲抄錯(cuò)了第一個(gè)多項(xiàng)式中a的符號(hào),得到結(jié)果為;由于乙抄漏了2,得到的結(jié)果為
(1)求a、b的值 ;
(2)求出正確的結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com