【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE。
①∠AEB的度數(shù)為__________;
②線段AD,BE之間的數(shù)量關(guān)系為__________;
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)A到BP的距離為________________________________。
【答案】(1)①60°,②AD=BE;(2)∠AEB=90°,AE=BE+2CM,理由見解析;(3)A到BP的距離為或.
【解析】
(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).
(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.
(3)由PD=1可得:點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上;由∠BPD=90°可得:點(diǎn)P在以BD為直徑的圓上.顯然,點(diǎn)P是這兩個(gè)圓的交點(diǎn),由于兩圓有兩個(gè)交點(diǎn),接下來需對(duì)兩個(gè)位置分別進(jìn)行討論.然后,添加適當(dāng)?shù)妮o助線,借助于(2)中的結(jié)論即可解決問題.
解:(1)①如圖1,
∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC-∠CED=60°.
故答案為:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案為:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如圖2,
∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE。
在△ACD和△BCE中,
∴△ACD≌△BCE.
∴AD=BE,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°,
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=90°,
∵CD=CE,CM⊥DE,
∴DM=ME,
∵∠DCE=90°,
∴DM=ME=CM,
∴AE=AD+DE=BE+2CM.
(3)A到BP的距離為或.
理由如下:
∵PD=1,
∴點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上.
∵∠BPD=90°,
∴點(diǎn)P在以BD為直徑的圓上.
∴點(diǎn)P是這兩圓的交點(diǎn).
①當(dāng)點(diǎn)P在如圖3①所示位置時(shí),
連接PD、PB、PA,作AH⊥BP,垂足為H,
過點(diǎn)A作AE⊥AP,交BP于點(diǎn)E,如圖3①.
∵四邊形ABCD是正方形,
∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.
∴BD= .
∵DP=1,
∴BP=.
∵∠BPD=∠BAD=90°,
∴A、P、D、B在以BD為直徑的圓上,
∴∠APB=∠ADB=45°.
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,點(diǎn)B、E、P共線,AH⊥BP,
∴由(2)中的結(jié)論可得:BP=2AH+PD.
∴=2AH+1.
∴AH=.
②當(dāng)點(diǎn)P在如圖3②所示位置時(shí),
連接PD、PB、PA,作AH⊥BP,垂足為H,
過點(diǎn)A作AE⊥AP,交PB的延長線于點(diǎn)E,如圖3②.
同理可得:BP=2AH-PD.
∴=2AH-1.
∴AH=.
綜上所述:點(diǎn)A到BP的距離為或.
故答案為:(1)①60°,②AD=BE;(2)∠AEB=90°,AE=BE+2CM,理由見解析;(3)A到BP的距離為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,過點(diǎn)D(0,)的直線與拋物線交于點(diǎn)M、N,與軸交于點(diǎn)E,且點(diǎn)M、N關(guān)于點(diǎn)E對(duì)稱,求直線MN的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)坐標(biāo)為(﹣2,0).
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)如果M為拋物線的頂點(diǎn),聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升。居民教育、文化和娛樂消費(fèi)支出持續(xù)增長。下圖為北京市統(tǒng)計(jì)局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費(fèi)支出的折線圖。
說明:在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較。根據(jù)上述信息,下列結(jié)論中錯(cuò)誤的是( )
A. 2017年第二季度環(huán)比有所提高
B. 2017年第四季度環(huán)比有所降低
C. 2018年第一季度同比有所提高
D. 2018年第四季度同比有所提高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下表中,我們把第i行第j列的數(shù)記為(其中i,j都是不大于5的正整數(shù)),對(duì)于表中的每個(gè)數(shù),規(guī)定如下:當(dāng)i≥j時(shí),=l;當(dāng)i<j時(shí),=0。例如:當(dāng)i=2,j=1時(shí),==1。按此規(guī)定,=______;表中的25個(gè)數(shù)中,共有_______個(gè)1;計(jì)算 +·+·+·+·的值為_______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2.當(dāng)傘收緊時(shí),點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時(shí),動(dòng)點(diǎn)P由A向B移動(dòng);當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),傘張得最開.已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.
﹙1﹚求AP長的取值范圍;
﹙2﹚在陽光垂直照射下,傘張得最開時(shí),求傘下的陰影﹙假定為圓面﹚面積S﹙結(jié)果保留π﹚.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知四邊形ABCD和一點(diǎn)O,求作四邊形A′B′C′D′,使它與四邊形ABCD關(guān)于點(diǎn)O對(duì)稱;如果把O點(diǎn)移至如圖(2)所示位置,又該怎么作圖呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,E為直角邊AC的中點(diǎn),過D,E作直線交AB的延長線于F.求證:=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明畫了一個(gè)銳角,并作出了它的兩條高和,兩高相交于點(diǎn).小明說圖形中共有兩對(duì)相似三角形,他說的對(duì)嗎?請(qǐng)你判定一下,如果正確,就其中的一對(duì)進(jìn)行說理.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com