【題目】如圖,已知拋物線,過點(diǎn)D(0,)的直線與拋物線交于點(diǎn)M、N,與軸交于點(diǎn)E,且點(diǎn)M、N關(guān)于點(diǎn)E對(duì)稱,求直線MN的解析式.
【答案】y=x.
【解析】
設(shè)直線MN的解析式為y=kx(k≠0).根據(jù)一元二次方程x2-4x+3=0的根求得點(diǎn)E的坐標(biāo).把點(diǎn)E的坐標(biāo)代入求得k的值即可.
過點(diǎn)D(0,)的直線與拋物線交于M(xM,yM)、N(xN,yN)兩點(diǎn),與x軸交于點(diǎn)E,使得M、N兩點(diǎn)關(guān)于點(diǎn)E對(duì)稱。
設(shè)直線MN的解析式為:y=kx,
則有:YM+YN=0,
由 ,
x24x+3=kx,
移項(xiàng)后合并同類項(xiàng)得x2(k+4)x+=0,
∴xM+xN=4+k.
∴yM+yN=kxM+kxN=k(xM+xN)5=0,
∴yM+yN=k(xM+xN)=5,
即k(k+4)5=0,
∴k=1或k=5.
當(dāng)k=5時(shí),方程x2(k+4)x+=0的判別式△<0,直線MN與拋物線無交點(diǎn),
∴k=1,
∴直線MN的解析式為y=x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -6 C. -4 D. -
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD是⊙O的內(nèi)接正方形,延長(zhǎng)BA到E,使AE=AB,連接ED.
(1)求證:直線ED是⊙O的切線;
(2)連接EO交AD于點(diǎn)F,求證:EF=2FO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形的頂點(diǎn)、在一個(gè)半徑為的圓上,頂點(diǎn)、在圓內(nèi),將正方形沿圓的內(nèi)壁逆時(shí)針方向作無滑動(dòng)的滾動(dòng).當(dāng)點(diǎn)第一次落在圓上時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)和二次函數(shù)y=ax2+bx+c(a≠0)的圖象交于A(﹣3,0)和B兩點(diǎn),拋物線與x軸交于A、C兩點(diǎn),且C的橫坐標(biāo)在0到1之間(不含端點(diǎn)),下列結(jié)論正確的是( )
A. abc<0 B. 3a﹣b>0 C. 2a﹣b+m<0 D. a﹣b>2m﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大小.
(2)說明線段AC、CD、BD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某建筑物,從10m高的窗口A,用水管向外噴水,噴出的水呈拋物線狀(拋物線所在的平面與墻面垂直),如圖所示,如果拋物線的最高點(diǎn)M離墻1m,離地面m,則水流落地點(diǎn)B離墻的距離OB是( )
A.2mB.3mC.4mD.5m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于B點(diǎn),OC=BC,∠B=30°.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE。
①∠AEB的度數(shù)為__________;
②線段AD,BE之間的數(shù)量關(guān)系為__________;
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)A到BP的距離為________________________________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com