【題目】某校九(1)班開展數(shù)學活動,李明和張華兩位同學合作用測角儀測量學校旗桿的高度,李明站在B點測得旗桿頂端E點的仰角為45°,張華站在D(D點在直線FB上)測得旗桿頂端E點仰角為15°,已知李明和張華相距(BD)30米,李明的身高(AB)1.6米,張華的身高(CD)1.75米,求旗桿的高EF的長.(結果精確到0.1.參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
【答案】旗桿的高為米.
【解析】
過點A作AM⊥EF于M,過點C作CN⊥EF于N,則MN=0.15m.由李明站在B點測得旗桿頂端E點的仰角為45°,可得△AEM是等腰直角三角形,繼而得出得出AM=ME,設AM=ME=xm,則CN=(x+30)m,EN=(x-0.15)m.在Rt△CEN中,由tan∠ECN=,代入CN、EN解方程求出x的值,繼而可求得旗桿的高EF.
過點A作AM⊥EF于M,過點C作CN⊥EF于N,
∵AB=1.6,CD=1.75,
∴MN=0.15m,
∵∠EAM=45°,
∴AM=ME,
設AM=ME=xm,
則CN=(x+30)m,EN=(x-0.15)m,
∵∠ECN=15°,
∴tan∠ECN==,
即≈0.27,
解得:x≈11.3,
則EF=EM+MF≈11.3+1.6=12.9(m),
答:旗桿的高為米.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O.
(1)作∠B的平分線與⊙O交于點D(用尺規(guī)作圖,不用寫作法,但要保留作圖痕跡);
(2)在(1)中,連接AD,若∠BAC=60°,∠C=66°,求∠DAC的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等.
(1)(a+b)n展開式中項數(shù)共有 項.
(2)寫出(a+b)5的展開式:(a+b)5= .
(3)利用上面的規(guī)律計算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明同學設計的“已知底邊及底邊上的高作等腰三角形”的尺規(guī)作圖的過程.
已知:如圖1,線段a和線段b.
求作:△ABC,使得AB=AC,BC=a,BC邊上的高為b.
作法:如圖2,
①作射線BM,并在射線BM上截取BC=a;
②作線段BC的垂直平分線PQ,PQ交BC于D;
③以D為圓心,b為半徑作圓,交PQ于A;
④連接AB和AC.
則△ABC就是所求作的圖形.
根據(jù)上述作圖過程,回答問題:
(1)用直尺和圓規(guī),補全圖2中的圖形;
(2)完成下面的證明:
證明:由作圖可知BC=a,AD=b.
∵PQ為線段BC的垂直平分線,點A在PQ上,
∴AB=AC(______)(填依據(jù)).
又∵AD在線段BC的垂直平分線PQ上,
∴AD⊥BC.
∴AD為BC邊上的高,且AD=b.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的動點P和圖形N,給出如下定義:如果Q為圖形N上一個動點,P,Q兩點間距離的最大值為dmax,P,Q兩點間距離的最小值為dmin,我們把dmax+dmin的值叫點P和圖形N間的“和距離”,記作d(P,圖形N).
(1)如圖1,正方形ABCD的中心為點O,A(3,3).
①點O到線段AB的“和距離”d(O,線段AB)=______;
②設該正方形與y軸交于點E和F,點P在線段EF上,d(P,正方形ABCD)=7,求點P的坐標.
(2)如圖2,在(1)的條件下,過C,D兩點作射線CD,連接AC,點M是射線CD上的一個動點,如果6<d(M,線段AC)<6+3,直接寫出M點橫坐標t取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市為了節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費為更好地決策,自來水公司在某街道隨機抽取了部分用戶的用水量數(shù)據(jù),按A,B,C,D,E五個區(qū)間進行統(tǒng)計,并將統(tǒng)計結果繪制如下兩幅不完整的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:(說明:A:0﹣3噸;B:3﹣6噸;C:6﹣9噸;D:9﹣12噸;E:12﹣16噸,且每組數(shù)據(jù)區(qū)間包括右端的數(shù)但不包括左端的數(shù))
(1)這次隨機抽樣調查了_____用戶
(2)補全頻數(shù)分布直方圖,求扇形統(tǒng)計圖中B部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶9噸,那么該街道1.8萬用戶中約有多少用戶的用水全部享受基本用水量的價格?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司研發(fā)生產(chǎn)的560件新產(chǎn)品需要精加工后才能投放市場.現(xiàn)由甲、乙兩個工廠來加工生產(chǎn),已知甲工廠每天加工生產(chǎn)的新產(chǎn)品件數(shù)是乙工廠每天加工生產(chǎn)新產(chǎn)品件數(shù)的1.5倍,并且加工生產(chǎn)240件新產(chǎn)品甲工廠比乙工廠少用4天.
(1)求甲、乙兩個工廠每天分別可加工生產(chǎn)多少件新產(chǎn)品?
(2)若甲工廠每天的加工生產(chǎn)成本為2.8萬元,乙工廠每天的加工生產(chǎn)成本為2.4萬元要使這批新產(chǎn)品的加工生產(chǎn)總成本不超過60萬元,至少應安排甲工廠加工生產(chǎn)多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com