閱讀下列材料:
小明遇到一個問題:5個同樣大小的正方形紙片排列形式如圖1所示,將它們分割后拼接成一個新的正方形.他的做法是:按圖2所示的方法分割后,將三角形紙片①繞AB的中點O旋轉至三角形紙片②處,依此方法繼續(xù)操作,即可拼接成一個新的正方形DEFG.請你參考小明的做法解決下列問題:
1.現(xiàn)有5個形狀、大小相同的矩形紙片,排列形式如圖3所示.請將其分割后拼接成一個平行四邊形.要求:在圖3中畫出并 指明拼接成的平行四邊形(畫出一個符合條件的平行四邊形即可)
2.如圖4,在面積為2的平行四邊形ABCD中,點E、F、G、H分別是邊AB、BC、CD、DA的中點,分別連結AF、BG、CH、DE得到一個新的平行四邊形MNPQ.請在圖4中探究平行四邊形MNPQ面積的大小(畫圖并直接寫出結果).
科目:初中數學 來源: 題型:閱讀理解
1 |
5 |
4 |
10 |
2 |
5 |
查看答案和解析>>
科目:初中數學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數學 來源: 題型:閱讀理解
閱讀下列材料:
小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
喜歡動腦筋的小明又繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
他的做法是:
如圖3,先畫△ADC ,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因為∠CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結論:
當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
請你參考小明的做法繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結論(不必寫出探究過程或理由).
查看答案和解析>>
科目:初中數學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數學 來源:2011-2012學年北京大興區(qū)中考一模數學試卷(帶解析) 題型:解答題
閱讀下列材料:
小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
喜歡動腦筋的小明又繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
他的做法是:
如圖3,先畫△ADC ,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因為∠CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結論:
當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
請你參考小明的做法繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結論(不必寫出探究過程或理由).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com