如圖,在三角形紙片ABC中,已知∠ABC=90°,AC=5,BC=4,過點(diǎn)A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點(diǎn)B落在直線l上的點(diǎn)P處,折痕為MN,當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),折痕的端點(diǎn)M、N也隨之移動(dòng),若限定端點(diǎn)M、N分別在AB、BC邊上(包括端點(diǎn))移動(dòng),則線段AP長度的最大值與最小值的差為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:關(guān)鍵在于找到兩個(gè)極端,即AP取最大或最小值時(shí),點(diǎn)M或N的位置.經(jīng)實(shí)驗(yàn)不難發(fā)現(xiàn),分別求出點(diǎn)M與A重合時(shí),AP取最大值3和當(dāng)點(diǎn)N與C重合時(shí),AP的最小值4-所以可求線段AP長度的最大值與最小值之差.
解答:解:如圖,過點(diǎn)C作CD⊥直線l交l于點(diǎn)D,
則四邊形ABCD為矩形,通過操作知,當(dāng)折疊過點(diǎn)A時(shí),即點(diǎn)M與點(diǎn)A重合時(shí),AP的值最大,
此時(shí)記為點(diǎn)P1,易證四邊形ABNP1為正方形,
由于AC=5,BC=4,
故AB===3,
當(dāng)折疊MN過點(diǎn)C時(shí),AP的值最小,此時(shí)記為點(diǎn)P,
由于PC=BC=4,AB=CD=3,
故PD==,
故此時(shí)AP=AD-PD=4-,
線段AP長度的最大值與最小值的差為:3-(4-)=3-4+=-1.
故選:D.
點(diǎn)評(píng):本題考查了學(xué)生的動(dòng)手能力及圖形的折疊、勾股定理的應(yīng)用等知識(shí),難度稍大,學(xué)生主要缺乏動(dòng)手操作習(xí)慣,單憑想象容易造成錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點(diǎn)D重合,則CE的長度為( 。
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠A=65°,∠B=75°,將紙片的一角折疊(折痕為DE),使點(diǎn)C落在△ABC內(nèi)的C′處,若∠AEC′=20°,則∠BDC′的度數(shù)是( 。
A、30°B、40°C、50°D、60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點(diǎn)D重合,則CE的長度為(  )
A、3
B、6
C、2
3
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,AC=6,∠A=30°,∠C=90°,將∠A沿DE折疊,使點(diǎn)A與點(diǎn)B重合,則折痕DE的長為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•太原一模)如圖,在三角形紙片ABC中,BC=3,AB=5,∠BCA=90°,將其對(duì)折后點(diǎn)A落在BC的延長線上,折痕與AC交于點(diǎn)E,則CE的長是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案