精英家教網(wǎng)如圖,已知直線l經(jīng)過點D(-1,4),與x軸的負(fù)半軸和y軸的正半軸分別交于A,B兩點,且直角△AOB的內(nèi)切圓的面積為π,求直線l對應(yīng)的一次函數(shù)的表達(dá)式.
分析:要求直線l對應(yīng)的一次函數(shù)的表達(dá)式,由直線l經(jīng)過點D(-1,4),根據(jù)待定系數(shù)法,只需求出此直線上另外一點F的坐標(biāo)即可.設(shè)直角△AOB的內(nèi)切圓⊙M與OA、OB、AB分別切于點G、E、F.先由直角△AOB的內(nèi)切圓的面積為π,得出其內(nèi)切圓面積為1,易證四邊形OGME是正方形,得出點G的坐標(biāo)為(-1,0).再延長GM交AB于N,證明點N與點D重合.然后過點F作FP⊥OB于P,交GN于H.分別解RT△MNF和RT△HNF,求出點F的坐標(biāo).
解答:精英家教網(wǎng)解:設(shè)直角△AOB的內(nèi)切圓⊙M與OA、OB、AB分別切于點G、E、F,則∠MGO=∠MFB=∠OEM=90°.
∵⊙M的面積為π,
∴π×ME2=π,
∴ME=1.
∵∠MGO=∠GOE=∠OEM=90°,MG=ME,
∴四邊形OGME是正方形,
∴OG=1,點G的坐標(biāo)為(-1,0).
延長GM交AB于N,則NG⊥OA,
∴N點橫坐標(biāo)與G點橫坐標(biāo)相同,是-1,
又∵直線AB經(jīng)過點D(-1,4),
∴點N與點D重合.
∴MN=NG-MG=4-1=3.
在RT△MNF中,MN=3,MF=1,
由勾股定理,可知FN=2
2

∴sin∠FNM=
1
3
,tan∠FNM=
1
2
2
=
2
4

過點F作FP⊥OB于P,交GN于H,則FP=FH+HP=FH+ME=FH+1,HG=HM+MG=HM+1.
在Rt△HNF中,∠FHN=90°,F(xiàn)N=2
2
,sin∠FNH=
1
3

∴FH=FN•sin∠FNH=
2
2
3
,
∴FP=
2
2
3
+1=
2
2
+3
3
;
在RT△MHF中,∠FHN=90°,F(xiàn)H=
2
2
3
,tan∠MFH=tan∠FNM=
2
4
,
∴HM=FH•tan∠MFH=
2
2
3
×
2
4
=
1
3
,
∴HG=
1
3
+1=
4
3
,
∴點F的坐標(biāo)為(-
2
2
+3
3
,
4
3
).
設(shè)直線l的解析式為y=kx+b.
∵直線l經(jīng)過點D(-1,4),點F(-
2
2
+3
3
,
4
3
),
-k+b=4
-
2
2
+3
3
k+b=
4
3
,
解得
k=2
2
b=4+2
2

故所求直線l的解析式為y=2
2
x+4+2
2
點評:本題主要考查了直角三角形內(nèi)切圓半徑的求法,切線的性質(zhì),正方形的判定與性質(zhì),解直角三角形及運用待定系數(shù)法求一次函數(shù)的解析式,綜合性較強,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線l經(jīng)過點A(1,0),與雙曲線y=
m
x
(x>0)交于點B(2,1).過點P(p,p-1)(p>1精英家教網(wǎng))作x軸的平行線分別交雙曲線y=
m
x
(x>0)和y=-
m
x
(x<0)于點M、N.
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實數(shù)p,使得S△AMN=4S△AMP?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)三模)如圖,已知直線l經(jīng)過點A(1,0),與雙曲線y=
m
x
(x>0)交于點B(2,1).過點P(a,a-1)(a>1)作x軸的平行線分別交雙曲線y=
m
x
(x>0)和y=-
m
x
(x<0)于點M、N.
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題

如圖,已知直線l經(jīng)過點A(1,0),與雙曲線y=(x>0)交于點B(2,1),過點P(p,p-1)(p>1)作x軸的平行線分別交雙曲線y=(x>0)和y=-(x<0)于點M、N。
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實數(shù)p,使得S△AMN=4S△AMP?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省蘇州市高新區(qū)2010-2011學(xué)年七年級下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

如圖,已知直線經(jīng)過點和點,另一條直線

經(jīng)過點,且與軸相交于點
(1)  求直線的解析式;
(2)若的面積為3,求的值.

查看答案和解析>>

同步練習(xí)冊答案