精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形A′B′C′D′的位置,旋轉角為α(0°<α<90°),若∠1=110°,則∠α=

【答案】20°
【解析】如圖,

∵四邊形ABCD為矩形,
∴∠B=∠D=∠BAD=90°,
∵矩形ABCD繞點A順時針旋轉得到矩形AB′C′D′,
∴∠D′=∠D=90°,∠4=α,
∵∠1=∠2=110°,
∴∠3=360°-90°-90°-110°=70°,
∴∠4=90°-70°=20°,
∴∠α=20°.
故答案為20°.
根據矩形的性質得∠B=∠D=∠BAD=90°,根據旋轉的性質得∠D′=∠D=90°,∠4=α,利用對頂角相等得到∠1=∠2=110°,再根據四邊形的內角和為360°可計算出∠3=70°,然后利用互余即可得到∠α的度數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀下列一段文字:在直角坐標系中,已知兩點的坐標是Mx1,y1),Nx2,y2)),M,N兩點之間的距離可以用公式MN計算.解答下列問題:

1)若點P24),Q(﹣3,﹣8),求P,Q兩點間的距離;

2)若點A12),B4,﹣2),點O是坐標原點,判斷AOB是什么三角形,并說明理由.

3)已知點A(5,5),B(-4,7),點Px軸上,且要使PA+PB的和最小,求PA+PB的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在網格(每個小正方形的邊長均為1)中選取9個格點(格線的交點稱為格點),如果以A為圓心,r為半徑畫圓,選取的格點中除點A外恰好有3個在圓內,則r的取值范圍為( )

A.2 <r<
B. <r≤3
C. <r<5
D.5<r<

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABCD,∠EBF=2ABE,∠EDF=2CDE,則∠E與∠F之間滿足的數量關系是(

A. E=FB. E+∠F=180°

C. 3E+∠F=360°D. 2E-F=90°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,點DAB邊中點,點EBC邊上一點,將△ADE沿DE折疊,得到△FDE,使△FDE與△BDE重疊部分的面積是△AEB面積的,若AC3,BC6,則線段BE的長為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線x軸、y軸分別相交于A、B兩點,與直線交于點C,且點C的橫坐標為1

1)求b的值;

2)點,在直線上,若,則__________

3)若動點P在線段OC上(點P不與點C重合),連接PAPB,設點P的橫坐標為m,△PAB的面積為S,求S關于m的函數關系式(不要求寫出自變量m的取值范圍).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】興華商店準備購進甲、乙兩種書包出售,每個甲種書包的進價比每個乙種書包的進價多20元,購進3個甲種書包的費用和購進4個乙種書包的費用相等,現(xiàn)計劃購進兩種書包共100個,其中乙種書包不少于35個.

1)甲種書包進價為__________/個,乙種書包進價為__________/個;

2)若甲種書包每個售價120元,乙種書包每個售價90元,且購進這100個書包的費用不低于7200元,如果這100個書包都可售完,那么興華商店如何進貨才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在菱形中,

1)如圖1,點為線段的中點,連接.若,求線段的長.

2)如圖2,為線段上一點(不與,重合),以為邊向上構造等邊三角形,線段交于點,連接,,為線段的中點.連接,判斷的數量關系,并證明你的結論.

3)在(2)的條件下,若,請你直接寫出的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料

已知:如圖,四邊形ABCD是平行四邊形;

求作:菱形AECF,使點E,F分別在BCAD上.
小凱的作法如下:
1)連接AC;
2)作AC的垂直平分線EF分別交BCADE,F
3)連接AECF
所以四邊形AECF是菱形.

老師說:“小凱的作法正確”.

回答問題:
已知:在平行四邊形ABCD中,點E、F分別在邊BC、AD______________________________________________.(補全已知條件)

查看答案和解析>>

同步練習冊答案