【題目】如圖,在網(wǎng)格(每個(gè)小正方形的邊長均為1)中選取9個(gè)格點(diǎn)(格線的交點(diǎn)稱為格點(diǎn)),如果以A為圓心,r為半徑畫圓,選取的格點(diǎn)中除點(diǎn)A外恰好有3個(gè)在圓內(nèi),則r的取值范圍為( )

A.2 <r<
B. <r≤3
C. <r<5
D.5<r<

【答案】B
【解析】解:給各點(diǎn)標(biāo)上字母,如圖所示:

AB= =2 ,AC=AD= = ,AE= =3 ,AF= = ,AG=AM=AN= =5,
<r≤3 時(shí),以A為圓心,r為半徑畫圓,選取的格點(diǎn)中除點(diǎn)A外恰好有3個(gè)在圓內(nèi).
所以答案是:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解點(diǎn)和圓的三種位置關(guān)系的相關(guān)知識,掌握圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A1(1,1)在直線y=x上,過點(diǎn)A1分別作y軸、x軸的平行線交直線y= x于點(diǎn)B1 , B2 , 過點(diǎn)B2作y軸的平行線交直線y=x于點(diǎn)A2 , 過點(diǎn)A2作x軸的平行線交直線y= x于點(diǎn)B3 , …,按照此規(guī)律進(jìn)行下去,則點(diǎn)An的橫坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣2x+4x軸、y軸分別交于A、B兩點(diǎn),P是直線AB上的一個(gè)動點(diǎn),點(diǎn)C的坐標(biāo)為(﹣4,0),PCy軸點(diǎn)于D,O是原點(diǎn).

1)求△AOB的面積;

2)線段AB上存在一點(diǎn)P,使△DOC≌△AOB,求此時(shí)點(diǎn)P的坐標(biāo);

3)直線AB上存在一點(diǎn)P,使以P、C、O為頂點(diǎn)的三角形面積與△AOB面積相等,求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為2,點(diǎn)P是⊙O內(nèi)一點(diǎn),且OP= ,過P作互相垂直的兩條弦AC、BD,則四邊形ABCD面積的最大值為( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ABC=45°,點(diǎn)DBC邊上一動點(diǎn)(與點(diǎn)B,C不重合),點(diǎn)E與點(diǎn)D關(guān)于直線AC對稱,連結(jié)AE,過點(diǎn)BBFED的延長線于點(diǎn)F.

(1)依題意補(bǔ)全圖形;

(2)當(dāng)AE=BD時(shí),用等式表示線段DEBF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF∥AD,1=2,BAC=70°.將求∠AGD的過程填寫完整.

解: EFAD,

∴∠2=____(____________________________)

又∵∠1=2

∴∠1=3(等量代換)

AB_____(_____________________________)

∴∠BAC+______=180°(___________________________)

∵∠BAC=70°

∴∠AGD=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形A′B′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)以點(diǎn)O為圓心的同心圓,

圖1 圖2
(1)如圖1,大圓的弦AB交小圓于C,D兩點(diǎn),試判斷AC與BD的數(shù)量關(guān)系,并說明理由.
(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線,切點(diǎn)為C,證明:AC=BC.
(3)在(2)的基礎(chǔ)上,已知AB=20cm,直接寫出圓環(huán)的面積.

查看答案和解析>>

同步練習(xí)冊答案