如圖,從山頂A望地面的C、D兩點(diǎn),俯角分別為45°和60°,測(cè)得CD=100m,則山高AB=______m.
在Rt△ABC中,BC=AB×tan60°=
3
AB,
在Rt△ABD中,BD=AB×tan45°=AB,
∵DC=BC-BD=(
3
-1)AB=100,
∴AB=
100
3
-1
=150+50
3
(m).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

聰聰放一線長(zhǎng)125米的風(fēng)箏,他的風(fēng)箏線與水平地面構(gòu)成39°角,他的風(fēng)箏高為( 。
A.125•sin39°B.125•cos39°C.125•tan39°D.125•cot39°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖1,在△ABC中,∠B、∠C均為銳角,其對(duì)邊分別為b、c,求證:
b
sinB
=
c
sinC
;
(2)在△ABC中,AB=
3
,AC=
2
,∠B=45°,問(wèn)滿足這樣的△ABC有幾個(gè)在圖2中作出來(lái)(不寫(xiě)作法,不述理由)并利用(1)的結(jié)論求出∠ACB的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖1,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.求證:△OAB是等腰三角形.
(2)某路口設(shè)立了交通路況顯示牌(如圖2).已知立桿AB高度是3m,從側(cè)面D點(diǎn)測(cè)得顯示牌頂端C點(diǎn)和底端B點(diǎn)的仰角分別是60°和45°.求路況顯示牌BC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖1為已建設(shè)封項(xiàng)的16層樓房和其塔吊圖,圖2為其示意圖,吊臂AB與地面EH平行,測(cè)得A點(diǎn)到樓頂D點(diǎn)的距離為5m,每層樓高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知Rt△ABC中,斜邊BC上的高AD=4,cosB=
4
5
,則AC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,則對(duì)角線AC的長(zhǎng)為( 。
A.
21
B.
21
3
C.
2
21
3
D.
5
21
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A,D是公園中人工湖邊的兩棵樹(shù),AB,BC,CD是公園內(nèi)的甬路.小明同學(xué)想測(cè)出A,D兩點(diǎn)間的距離.于是他進(jìn)行了如下測(cè)量:B點(diǎn)在A點(diǎn)北偏東α方向,C點(diǎn)在B點(diǎn)北偏東β方向,C點(diǎn)在D點(diǎn)正東方向.你認(rèn)為他還需要測(cè)出AB,BC,CD中哪些線段的長(zhǎng)?并根據(jù)小明的測(cè)量和你的判斷推導(dǎo)出AD的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,小強(qiáng)和小明去測(cè)量一座古塔的高度,他們?cè)陔x古塔60m的A處,用測(cè)角儀測(cè)得古塔頂?shù)难鼋菫?0°,已知測(cè)角儀高AD=1.5m,則古塔BE的高為( 。
A.(20
3
-1.5)m
B.(20
3
+1.5)m
C.31.5mD.28.5m

查看答案和解析>>

同步練習(xí)冊(cè)答案