【題目】在平面直角坐標系中,我們將拋物線通過平移后得到,且設平移后所得拋物線的頂點依次為,這些頂點均在格點上,我們將這些拋物線稱為繽紛拋物線k為整數(shù)).

1的坐標為____________,直接寫出平移后拋物線的解析式為____________(用k表示);

2)若平移后的拋物線與拋物線交于點A,對稱軸與拋物線交于點B,若,求整數(shù)k的值.

【答案】1)(6,12),;(24

【解析】

1)觀察平移后拋物線頂點坐標的特點,然后依據(jù)規(guī)律即可得到平移后拋物線的解析式;

2)如圖1所示:過點,垂足為,由可知頂點,對稱軸為,對稱軸與拋物線的交點為,然后求得拋物線的交點,,最后依據(jù)列方程求解即可;

解:(1拋物線通過平移后得到,,,,,

的坐標為:(6,12),

;

2)如圖1所示:過點,垂足為

可知頂點,對稱軸為,對稱軸與拋物線的交點為

,

,

,

,整理得:,

解得;

時原方程無意義,故不是原方程的根.

的值為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解今年初三學生的數(shù)學學習情況,某校在第一輪模擬測試后,對初三全體同學的數(shù)學成績作了統(tǒng)計分析,繪制如下圖表:請結合圖表所給出的信息解答系列問題:

(1)該校初三學生共有多少人?

(2)求表中a,b,c的值,并補全條形統(tǒng)計圖.

(3)初三(一)班數(shù)學老師準備從成績優(yōu)秀的甲、乙、丙、丁四名同學中任意抽取兩名同學做學習經(jīng)驗介紹,求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ly=3x+3x軸、y軸分別相交于A、B兩點,拋物線y=ax22ax+a+4a0)經(jīng)過點B

1)求該拋物線的函數(shù)表達式;

2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設點M的橫坐標為m,ABM的面積為S,求Sm的函數(shù)表達式,并求出S的最大值;

3)在(2)的條件下,當S取得最大值時,動點M相應的位置記為點M′

①寫出點M′的坐標;

②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設點B、M′到直線l′的距離分別為d1d2,當d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)______.

2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的人數(shù)約為多少戶?

4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調(diào)查他們對精準扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形,點E上,且為的中點,點在線段的反向廷長線上.請利用無刻度的直尺按下列要求畫圖(保留畫圖的痕跡).

1)在圖1中,畫出的中點

2)在圖2中,畫出的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校共抽取50名同學參加學校舉辦的“預防新冠肺炎”知識測驗,所得成績分別記作60分、70分、80分、90分、100分,并將統(tǒng)計結果繪制成不完整的扇形統(tǒng)計圖(如圖).

1)若n108,則成績?yōu)?/span>60分的人數(shù)為  ;

2)若從這50位同學中,隨機抽取一人,求抽到同學的分數(shù)不低于90分的概率;

3)若成績的唯一眾數(shù)為80分,求這個班平均成績的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:

(1)a=   ,b=   ,c=   ;

(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為   度;

(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線CD交⊙O于點D,過點D作⊙O的切線PDCA的延長線于點P,過點AAECD于點E,過點BBFCD于點F

1)求證:DPAB;

2)試猜想線段AE、EFBF之間的數(shù)量關系,并加以證明;

3)若AC6BC8,求線段PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABC的邊AB上一點,⊙O經(jīng)過點A、C,交AB于點D.過點CCEAB,垂足為E.連接CD,CD恰好平分∠BCE

1)求證:直線BC是⊙O的切線;

2)若⊙O的半徑為3,CD2,求BC的長.

查看答案和解析>>

同步練習冊答案