如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),△APQ與△AOB相似?
(3)當(dāng)t為何值時(shí),△APQ的面積為個(gè)平方單位?
解:(1)設(shè)直線AB的解析式為y=kx+b,
由題意,得,
解得,
所以,直線AB的解析式為y=﹣x+6;
(2)由AO=6,BO=8得AB=10,
所以AP=t,AQ=10﹣2t,
①當(dāng)∠APQ=∠AOB時(shí),△APQ∽△AOB.
所以=,
解得t=(秒),
②當(dāng)∠AQP=∠AOB時(shí),△AQP∽△AOB.
所以=,
解得t=(秒);
∴當(dāng)t為秒或秒時(shí),△APQ與△AOB相似;
(3)過(guò)點(diǎn)Q作QE垂直AO于點(diǎn)E.
在Rt△AOB中,sin∠BAO==,
在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,
S△APQ=AP•QE=t•(8﹣t),
=﹣t2+4t=,
解得t=2(秒)或t=3(秒).
∴當(dāng)t為2秒或3秒時(shí),△APQ的面積為個(gè)平方單位
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
榮慶公司計(jì)劃從商店購(gòu)買同一品牌的臺(tái)燈和手電筒,已知購(gòu)買一個(gè)臺(tái)燈比購(gòu)買一個(gè)手電筒多用20元,若用400元購(gòu)買臺(tái)燈和用160元購(gòu)買手電筒,則購(gòu)買臺(tái)燈的個(gè)數(shù)是購(gòu)買手電筒個(gè)數(shù)的一半.
(1)求購(gòu)買該品牌一個(gè)臺(tái)燈、一個(gè)手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購(gòu)買一個(gè)該品牌臺(tái)燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺(tái)燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買臺(tái)燈和手電筒的總費(fèi)用不超過(guò)670元,那么榮慶公司最多可購(gòu)買多少個(gè)該品牌臺(tái)燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在方格紙中,△ABC和△EPD的頂點(diǎn)均在格點(diǎn)上,要使△ABC∽△EPD,則點(diǎn)P所在的格點(diǎn)為( )
A. P1 B.P2 C.P3 D. P4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形ABCD的邊長(zhǎng)為1,AB邊上有一動(dòng)點(diǎn)P,連接PD,線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過(guò)點(diǎn)E作EQ⊥AB的延長(zhǎng)線于點(diǎn)Q.
(1)求線段PQ的長(zhǎng);
(2)問(wèn):點(diǎn)P在何處時(shí),△PFD∽△BFP,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知△ABC的三邊長(zhǎng)分別為,,2,△A′B′C′的兩邊長(zhǎng)分別是1和,如果△ABC與△A′B′C′相似,那么△A′B′C′的第三邊長(zhǎng)應(yīng)該是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D.點(diǎn)E、F分別在邊AB、AC上,且BE=AF,F(xiàn)G∥AB交線段AD于點(diǎn)G,連接BG、EF.
(1)求證:四邊形BGFE是平行四邊形;
(2)若△ABG∽△AGF,AB=10,AG=6,求線段BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com