【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小龍在全校隨機抽取了一部分同學(xué)就“我最喜愛的體育項目”進行了一次調(diào)查(每位同學(xué)必選且只選一項)下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)小龍一共抽取了 名學(xué)生.
(2)補全條形統(tǒng)計圖.
(3)求“立定跳遠”部分對應(yīng)的扇形圓心角的度數(shù).
【答案】(1)50;(2)見詳解;(3)115.2°.
【解析】
(1)根據(jù)跳繩的人數(shù)是15,占30%,即可求得總?cè)藬?shù);
(2)根據(jù)百分比的意義求得踢毽子的人數(shù),則其他項目的人數(shù)可求得,從而補全直方圖;
(3)利用“立定跳遠”部分對應(yīng)的百分比乘以360°即可求解.
解:(1)抽取的總?cè)藬?shù)是:15÷30%=50(人);
故答案為:50;
(2)踢毽子的人數(shù)是:50×20%=10(人),
則其他項目的人數(shù)是:50-15-16-10=9(人),
補全條形統(tǒng)計圖:
(3)“立定跳遠”部分對應(yīng)的扇形圓心角的度數(shù)為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在等邊△ABC中, AB=, D,E分別是AB,BC的中點(如圖1).若將△BDE繞點B逆時針旋轉(zhuǎn),得到△BD1E1,設(shè)旋轉(zhuǎn)角為α(0°<α<180°),記射線CE1與AD1的交點為P.
(1)判斷△BDE的形狀;
(2)在圖2中補全圖形,
①猜想在旋轉(zhuǎn)過程中,線段CE1與AD1的數(shù)量關(guān)系并證明;
②求∠APC的度數(shù);
(3)點P到BC所在直線的距離的最大值為________.(直接填寫結(jié)果)
、
圖2 備用
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,拋物線形狀如圖(1)所示.圖(2)建立直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間的關(guān)系是.請回答下列問題:
(1)柱子OA的高度是多少米?
(2)噴出的水流距水平面的最大高度是多少米?
(3)若不計其他因素,水池的半徑至少要多少米才能使噴出的水流不至于落在池外?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,一等腰直角三角板的一個銳角頂點與A重合,將此三角板繞A點旋轉(zhuǎn)時,兩邊分別交直線BC、CD于M、N.
(1)當(dāng)M、N分別在邊BC、CD上時(如圖1),求證:BM+DN=MN;
(2)當(dāng)M、N分別在邊BC、CD所在的直線上時(如圖2),線段BM、DN、MN之間又有怎樣的數(shù)量關(guān)系,請直接寫出結(jié)論 ;(不用證明)
(3)當(dāng)M、N分別在邊BC、CD所在的直線上時(如圖3),線段BM、DN、MN之間又有怎樣的數(shù)量關(guān)系,請寫出結(jié)論并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件。若商場平均每天要盈利1600元,每件襯衫應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店為吸引顧客設(shè)計了促銷活動:在一不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”“10元”“20元”“30元”的字樣.規(guī)定:顧客一次性消費滿400元,就可以在箱子里先后摸出兩個小球(每一次摸出后不放回),某顧客剛好消費400元,則該顧客獲得的金額不低于30元的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度數(shù);
(2)求證:直線AD是線段CE的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點P從點A出發(fā)沿AB以2cm/s的速度向點終點B運動,同時點Q從點B出發(fā)沿BC以1cm/s的速度向點終點C運動,它們到達終點后停止運動.
(1)幾秒后,點P、D的距離是點P、Q的距離的2倍;
(2)幾秒后,△DPQ的面積是24cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com