【題目】拋物線y=-x2+(m-1)x+m與y軸交于點(0,3).

(1)求出m的值,并畫出這條拋物線;

(2)求拋物線與x軸的交點和頂點坐標(biāo);

(3)當(dāng)x取什么值時,拋物線在x軸上方?

(4)當(dāng)x取什么值時,y的值隨x的增大而減小.

【答案】m=3;(-1,0)、(3,0)、頂點(1,4);-1x3;x1

【解析】試題分析:(1)、將點(0,3)代入解析式求出m的值;(2)、求出當(dāng)y=0時方程的解,從而得出與x軸的交點坐標(biāo),根據(jù)頂點的求法得出頂點坐標(biāo);(3)、根據(jù)函數(shù)圖像得出答案;(4)、根據(jù)函數(shù)圖像的增減性得出答案.

試題解析:(1)拋物線y=-+(m-1)x+my軸交于點(0,3)m=3.

圖象如圖所示.

(2)、拋物線與x軸的交點為(-1,0)(3,0),頂點坐標(biāo)為(1,4).

(3)、當(dāng)-1x3時,拋物線在x軸上方.

(4)、當(dāng)x1時,y的值隨x的增大而減小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果把鐘表的時針在任一時刻所在的位置作為起始位置,那么時針旋轉(zhuǎn)出一個平角及一個周角,至少需要多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(-10,0),B(-6,0),點C在y軸的正半軸上,CBO=45°,CDAB,CDA=90°.點P從點Q(8,0)出發(fā),沿x軸向左以每秒1個單位長的速度向點A勻速運動,運動時間為t秒.

(1)求點C的坐標(biāo).

(2)當(dāng)BCP=15°時,求t的值.

(3)以PC為直徑作圓,當(dāng)該圓與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,P是反比例函數(shù)y=x>0圖象上任意一點,以P為圓心,PO為半徑的圓與坐標(biāo)軸分別交于點A、B.

1求證:線段AB為P的直徑;

2AOB的面積;

3如圖2,Q是反比例函數(shù)y=x>0圖象上異于點P的另一點,以Q為圓心,QO為半徑畫圓與坐標(biāo)軸分別交于點C、D.求證:DOOC=BOOA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年來某縣加大了對教育經(jīng)費的投入,2013年投入2500萬元,2015年投入3500萬元.假設(shè)該縣投入教育經(jīng)費的年平均增長率為x,根據(jù)題意列方程,則下列方程正確的是( 。
A.2500x2=3500
B.2500(1+x)2=3500
C.2500(1+x%)2=3500
D.2500(1+x)+2500(1+x)2=3500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b都有:a⊕b=a(a﹣b)+1,其中等式右邊是通常的加法、減法及乘法運算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各等式正確的是( )

Aa3a2=a6 B.(x32=x6 C.(mn3=mn3 Db8÷b4=b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm, CD為AB邊上的高.動點P從點A出發(fā),沿著△ABC的三條邊逆時針走一圈回到A點,速度為2cm/s,設(shè)運動時間為ts.

(1) 求CD的長;

(2) t為何值時,△ACP為等腰三角形?

(3) 若M為BC上一動點,N為AB上一動點,是否存在M,N使得AM+MN的值最小,如果有請尺規(guī)作出圖形(不必求最小值),如果沒有請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】漳州市被國家交通運輸部列為國家公路運輸樞紐城市,現(xiàn)擁有營運客貨車月21000輛,21000用科學(xué)記數(shù)法表示為(  )
A.0.21×104
B.21×103
C.2.1×104
D.2.1×103

查看答案和解析>>

同步練習(xí)冊答案