【題目】如圖,在菱形ABCD中,過點DDEAB于點E,作DEBC于點F,連接EF,求證:

1ADE≌△CDF;

2)若∠A60°,AD4,求EDF的周長.

【答案】(1)見解析;(2)6

【解析】

1)利用菱形的性質(zhì)得到AD=CD,∠A=C,進而利用AAS證明兩三角形全等;

2)由ADE≌△CDF得到DE=DF,進而證明出DEF是等邊三角形,再解直角三角形求出DF的長,即可求出EDF的周長.

1)∵四邊形ABCD是菱形,

ADCD,∠A=∠C,

DEBA,DFCB,

∴∠AED=∠CFD90°

ADECDF,

∴△ADE≌△CDF;

2)∵△ADE≌△CDF,

DEDF,∠ADE=∠CDF

∵菱形ABCD,DEAB于點E,∠A60°

∴∠ADC120°,∠ADE30°,

∴∠EDF60°

∴△DEF是等邊三角形,

RtAED中,∵AD4,∠A60°,

DEsin60°AD2

∴△EDF的周長=3DE6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】正如我們小學學過的圓錐體積公式 表示圓周率,r表示圓錐的底面半徑,h表示圓錐的高)一樣,許多幾何量的計算都要用到.祖沖之是世界上第一個把計算到小數(shù)點后第7位的中國古代科學家,創(chuàng)造了當時世界上的最高水平,差不多過了1000年,才有人把計算得更精確.在輝煌成就的背后,我們來看看祖沖之付出了多少.現(xiàn)在的研究表明,僅僅就計算來講,他至少要對9位數(shù)字反復進行130次以上的各種運算,包括開方在內(nèi),即使今天我們用紙筆來算,也絕不是一件輕松的事情,何況那時候沒有現(xiàn)在的紙筆,數(shù)學計算不是用現(xiàn)在的阿拉伯數(shù)字,而是用算籌(小竹棍或小竹片)進行的,這需要怎樣的細心和毅力!他這種嚴謹治學的態(tài)度,不怕復雜計算的毅力,值得我們學習。下面我們就來通過計算解決問題:已知圓錐的側(cè)面展開圖是個半圓,若該圓錐的體積等于 ,則這個圓錐的高等于().

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cmBC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于(   .

A. 2 cm B. 4 cm C. 3 cm D. 5 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

求y關(guān)于x的函數(shù)關(guān)系式;

該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在平面直角坐標系xoy中,四邊形OABC是矩形,OA=4,OC=3,動點P從點C出發(fā),沿射線CB方向以每秒2個單位長度的速度運動;同時,動點Q從點O出發(fā),沿x軸正半軸方向以每秒1個單位長度的速度運動.設(shè)點P、點Q的運動時間為ts).

(1)當t=1s時,求經(jīng)過點O,P,A三點的拋物線的解析式;

(2)當t=2s時,求tan∠QPA的值;

(3)當線段PQ與線段AB相交于點M,且BM=2AM時,求ts)的值;

(4)連接CQ,當點P,Q在運動過程中,記CQP與矩形OABC重疊部分的面積為S,求St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABO的直徑,CO上的點,連接AC、CB,過OEOCB并延長EOF,使EOFO,連接AF并延長,AFCB的延長線交于D.求證:AE2FGFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,ADC=90°EAB的中點.

1)求證:ADC∽△ACB;

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4,AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店積極響應政府改革創(chuàng)新,奮發(fā)有為的號召,舉辦讀書節(jié)系列活動.活動中故事類圖書的標價是典籍類圖書標價的1.5倍,若顧客用540元購買圖書,能單獨購買故事類圖書的數(shù)量恰好比單獨購買典籍類圖書的數(shù)量少10本.

1)求活動中典籍類圖書的標價;

2)該店經(jīng)理為鼓勵廣大讀者購書,免費為購買故事類的讀者贈送圖1所示的精致矩形包書紙.在圖1的包書紙示意圖中,虛線是折痕,陰影是裁剪掉的部分,四角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.已知該包書紙的面積為875cm2(含陰影部分),且正好可以包好圖2中的《中國故事》這本書,該書的長為21cm,寬為15cm,厚為1cm,請直接寫出該包書紙包這本書時折疊進去的寬度.

查看答案和解析>>

同步練習冊答案