【題目】如圖,中,,.點(diǎn)出發(fā)沿運(yùn)動(dòng),速度為每秒,點(diǎn)是點(diǎn)為對(duì)稱中心的對(duì)稱點(diǎn),點(diǎn)運(yùn)動(dòng)的同時(shí),點(diǎn)出發(fā)沿運(yùn)動(dòng),速度為每秒,當(dāng)點(diǎn)到達(dá)頂點(diǎn)時(shí),同時(shí)停止運(yùn)動(dòng),設(shè)兩點(diǎn)運(yùn)動(dòng)時(shí)間為秒.

1)當(dāng)為何值時(shí),?

2)設(shè)四邊形的面積為,求關(guān)于的函數(shù)關(guān)系式;

3)四邊形面積能否是面積的?若能,求出此時(shí)的值;若不能,請(qǐng)說(shuō)明理由;

4)當(dāng)為何值時(shí),為等腰三角形?(直接寫(xiě)出結(jié)果)

【答案】1;(2;(3)能,;(4

【解析】

1)先在中,由勾股定理求出,再由,得出,然后由,根據(jù)平行線分線段成比例定理得出,列出比例式,求解即可;

2)根據(jù),即可得出關(guān)于的函數(shù)關(guān)系式;

3)根據(jù)四邊形面積是面積的,列出方程,解方程即可;

4為等腰三角形時(shí),分三種情況討論:;,每一種情況都可以列出關(guān)于的方程,解方程即可.

解:(1中,,,

,,

,

,

解得;

2

,

關(guān)于的函數(shù)關(guān)系式為;

3)四邊形面積能是面積的,理由如下:

由題意,得,

整理,得,

解得(不合題意舍去).

故四邊形面積能是面積的,此時(shí)的值為

4為等腰三角形時(shí),分三種情況討論:

如果,那么,解得;

如果,那么,解得;

如果,那么,解得

故當(dāng)秒時(shí),為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏從地出發(fā)向地行走,同時(shí)小聰從地出發(fā)向地行走,如圖,相交于點(diǎn)的兩條線段分別表示小敏、小聰離地的距離與已用時(shí)間之間的關(guān) 系,則_______時(shí),小敏、小聰兩人相距

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在正方形ABCD和正方形中,,連結(jié)

1)問(wèn)題發(fā)現(xiàn):_________;

2)拓展探究:將正方形繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)角為,連結(jié),試判斷:當(dāng)時(shí),的值有無(wú)變化?請(qǐng)僅就圖2中的情形給出你的證明;

3)問(wèn)題解決:請(qǐng)直接寫(xiě)出在旋轉(zhuǎn)過(guò)程中,當(dāng)三點(diǎn)共線時(shí)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,點(diǎn)C為半徑OA的中點(diǎn),過(guò)點(diǎn)CCD⊥OA交弦AB于點(diǎn)E,連接BD,且DE=DB

1)判斷BD與⊙O的位置關(guān)系,并說(shuō)明理由;

2)若CD=15,BE=10tanA=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開(kāi)展了多種社團(tuán)活動(dòng).小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書(shū)法社團(tuán)、科技社團(tuán)(分別用字母ABC,D依次表示這四個(gè)社團(tuán)),并把這四個(gè)字母分別寫(xiě)在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.

1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是   

2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再?gòu)氖S嗟目ㄆ须S機(jī)抽取一張卡片,記錄下卡片上的字母.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大邑縣某汽車(chē)出租公司有若干輛同一型號(hào)的貨車(chē)對(duì)外出租,每輛貨車(chē)的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車(chē)的日租金比淡季上漲25%.據(jù)統(tǒng)計(jì),淡季該公司平均每天有10輛貨車(chē)未出租,日租金總收入為3200元;旺季所有的貨車(chē)每天能全部租出,日租金總收入為6000元.

1)求該出租公司這批對(duì)外出租的貨車(chē)共有多少輛?

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車(chē)的日租金每上漲20元,每天租出去的貨車(chē)就會(huì)減少1輛,不考慮其它因素,該出租公司的日租金總收入最高是多少元?當(dāng)日租金總收入最高時(shí),每天出租貨車(chē)多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正比例函數(shù)ykxk是常數(shù),k≠0)的圖象,沿著y軸的一個(gè)方向平移|k|個(gè)單位后與x軸、y軸圍成一個(gè)三角形,我們稱這個(gè)三角形為正比例函數(shù)ykx的坐標(biāo)軸三角形,如果一個(gè)正比例函數(shù)的圖象經(jīng)過(guò)第一、三象限,且它的坐標(biāo)軸三角形的面積為5,那么這個(gè)正比例函數(shù)的解析式是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E

1)求證:AC平分∠DAB;

2)連接BC,若cosCAD,⊙O的半徑為5,求CD、AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=+4x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AO′B,則點(diǎn)B的坐標(biāo)是_________

查看答案和解析>>

同步練習(xí)冊(cè)答案