【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則△BDM的周長的最小值為_____.
【答案】8
【解析】
連接AD交EF與點(diǎn)M′,連結(jié)AM,由線段垂直平分線的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當(dāng)A、M、D在一條直線上時,MB+DM有最小值,然后依據(jù)要三角形三線合一的性質(zhì)可證明AD為△ABC底邊上的高線,依據(jù)三角形的面積為12可求得AD的長.
解:連接AD交EF與點(diǎn)M′,連結(jié)AM.
∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=12,解得AD=6,
∵EF是線段AB的垂直平分線,
∴AM=BM.
∴BM+MD=MD+AM.
∴當(dāng)點(diǎn)M位于點(diǎn)M′處時,MB+MD有最小值,最小值6.
∴△BDM的周長的最小值為DB+AD=2+6=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家在甲、乙兩家商場銷售同一商品所獲得的利潤分別為,(單位:元),,與銷售數(shù)量x(單位:件)的函數(shù)關(guān)系如圖所示,試根據(jù)圖象解決下列問題:
(1)分別求出,關(guān)于x的函數(shù)關(guān)系式;
(2)現(xiàn)廠家分配該商品800件給甲商場,400件給乙商場,當(dāng)甲、乙商場售完這批商品后,廠家可獲得的總利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC,∠C=90°,AC=12,BC=6,一條線段PQ=AB,P、Q兩點(diǎn)分別在AC和過點(diǎn)A且垂直于AC的射線AX上運(yùn)動,要使△ABC和△QPA全等,則AP= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩單位為愛心基金捐款,其中甲單位捐款4800元,乙單位捐款6000元,已知乙單位捐款人數(shù)比甲單位多30人,且兩單位人均捐款數(shù)相等,問這兩單位一共有多少人?人均捐款額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC、BD相交于點(diǎn)O,∠A=∠D,要使得△AOB≌△DOC,還需補(bǔ)充一個條件,下面補(bǔ)充的條件不一定正確的是( 。
A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE2=AD·AB,且∠ABE=∠ACB.
證明:(1)△ADE∽△AEB; (2)DE∥BC; (3)△BCE∽△EBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 DE∥BC,CD 與 BE 相交于點(diǎn) O,并且 S△DOE:S△COB=4:9,
(1)求 AE:AC 的值;
(2)求△ADE 與四邊形 DBCE 的面積比。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決下列兩個問題:
(1)如圖1,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,P為直線EF上一動點(diǎn),PA+PB的最小值為______,并在圖中標(biāo)出當(dāng)PA+PB取最小值時點(diǎn)P的位置.
(2)如圖2,點(diǎn)M、N在∠BAC的內(nèi)部,請在∠BAC的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠BAC兩邊的距離相等,且使PM=PN.(尺規(guī)作圖,保留作圖痕跡,無需證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com