【題目】因式分解:9bx2y﹣by3=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,若點(diǎn)的縱坐標(biāo)滿足, 則稱點(diǎn)是點(diǎn)的“絕對(duì)點(diǎn)”.
()點(diǎn)的“絕對(duì)點(diǎn)”的坐標(biāo)為.
()點(diǎn)是函數(shù)的圖像上的一點(diǎn),點(diǎn)是點(diǎn)的“絕對(duì)點(diǎn)”.若點(diǎn)與點(diǎn)重合,求點(diǎn)的坐標(biāo).
()點(diǎn)的“絕對(duì)點(diǎn)”是函數(shù)的圖像上的一點(diǎn).當(dāng)時(shí),求線段的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),F為CA的延長(zhǎng)線上的一點(diǎn),過點(diǎn)F 作FG⊥BC于G點(diǎn),并交AB于E點(diǎn).
(1)求證:AD∥FG;
(2)△AFE為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科學(xué)技術(shù)協(xié)會(huì)為倡導(dǎo)青少年主動(dòng)進(jìn)行研究性學(xué)習(xí),積極研究身邊的科學(xué)問題,組織了以“體驗(yàn)、創(chuàng)新、成長(zhǎng)”為主題的青少年科技創(chuàng)大賽,在層層選拔的基礎(chǔ)上,所有推薦參賽學(xué)生分別獲得了一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),工作人員根據(jù)獲獎(jiǎng)情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給出的信息解答下列問題:
(1)這次大賽獲得三等獎(jiǎng)的學(xué)生有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,表示三等獎(jiǎng)扇形的圓心角是多少度?
(4)若給所有推薦參賽學(xué)生每人發(fā)一張相同的卡片,各自寫上自己的名字,然后把卡片放入一個(gè)不透明的袋子里,搖勻后任意摸出一張,求摸出寫有一等獎(jiǎng)學(xué)生名字卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P為△ABC中BC邊的延長(zhǎng)線上一點(diǎn),∠A=50°,∠B=70°,則∠ACP=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)
閱讀材料:
如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=
證明:AC⊥BD→
∴S四邊形ABCD=S△ACD+S△ACB=
=
解答問題:
(1)上述證明得到的性質(zhì)可敘述為_______________________________________.
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com