【題目】完成下面推理過程.在括號內(nèi)的橫線上填空或填上推理依據(jù).
如圖,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求證:AB∥CD
證明:∵AB∥EF
∴∠APE=()
∵EP⊥EQ
∴∠PEQ=()
即∠QEF+∠PEF=90°
∴∠APE+∠QEF=90°
∵∠EQC+∠APE=90°
∴∠EQC=
∴EF∥()
∴AB∥CD()
【答案】∠PEF;兩直線平行,內(nèi)錯角相等;90°;垂直的定義;∠QEF;CD;內(nèi)錯角相等,兩直線平行;平行公理
【解析】證明:∵AB∥EF∴∠APE=∠PEF(兩直線平行,內(nèi)錯角相等)
∵EP⊥EQ
∴∠PEQ=90°(垂直的定義)
即∠QEF+∠PEF=90°
∴∠APE+∠QEF=90°
∵∠EQC+∠APE=90°
∴∠EQC=∠QEF
∴EF∥CD(內(nèi)錯角相等,兩直線平行)
∴AB∥CD(平行公理),
所以答案是:∠PEF,兩直線平行,內(nèi)錯角相等,90°,∠QEF,內(nèi)錯角相等,兩直線平行,CD,平行公理.
【考點精析】掌握垂線的性質(zhì)和平行線的判定與性質(zhì)是解答本題的根本,需要知道垂線的性質(zhì):1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短;由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結(jié)論是平行線的性質(zhì).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,以斜邊AB為邊向外作正方形ABDE,且正方形的對角線交于點O,連結(jié)OC.已知AC=5,OC=6 ,則另一直角邊BC的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知面包店的面包一個15元,小明去此店買面包,結(jié)賬時店員告訴小明:“如果你再多買一個面包就可以打九折,價錢會比現(xiàn)在便宜45元”,小明說:“我買這些就好了,謝謝.”根據(jù)兩人的對話,判斷結(jié)賬時小明買了多少個面包?( )
A.38
B.39
C.40
D.41
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC沿射線BC平移的得到的,BE=2,DE與AC交于點G,且滿足DG=2GE.若三角形CEG的面積為1,CE=1,則點G到AD的距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,經(jīng)過點O的直線交AB于E,交CD于F.求證:OE=OF.
(2)南沙群島是我國固有領土,現(xiàn)在我國南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至A處時,該島位于正東方向的B處,為了防止某國巡警干擾,就請求我國C處的魚監(jiān)船前往B處護航,測得C與AB的距離CD為20海里,已知A位于C處的南偏西60°方向上,B位于C的南偏東45°的方向上, ≈1.7,結(jié)果精確到1海里,求A、B之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮早晨從家騎車到學校,先上坡后下坡,所行路程y(米)與時間x(分鐘)的關系如圖所示,若返回時上坡、下坡的速度仍與去時上、下坡的速度分別相同,則小明從學校騎車回家用的時間是分鐘.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com