【題目】如圖1,兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn):如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關系是 ;
②設△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關系是 .
(2)猜想論證
當△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,請猜想(1)中S1與S2的數(shù)量關系是否仍然成立?若成立,請證明;若不成立,請說明理由.
(3)拓展探究
已知∠ABC=60°,BD平分∠ABC,BD=CD,BC=9,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE,請求相應的BF的長.
【答案】(1)①DE∥AC;②S1=S2;(2)見解析;(3)BF的長為3或6.
【解析】
(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD·,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行解答;
②根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點C到AB的距離等于點D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點D作DF1∥BE,求出四邊形BEDF1是菱形,根據(jù)菱形的對邊相等可得BE=DF1,然后根據(jù)等底等高的三角形的面積相等可知點F1為所求的點,過點D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據(jù)全等三角形的面積相等可得點F2也是所求的點,然后在等腰△BDE中求出BE的長,即可得解
解:(1)①∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上,
∴AC=CD,
∵∠BAC=90°﹣∠B=90°﹣30°=60°,
∴△ACD是等邊三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
故答案為DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=AB,
∴BD=AD=AC,
根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2;
故答案為S1=S2;
(2)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,
∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2;
(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時S△DCF1=S△BDE;
過點D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等邊三角形,
∴DF1=DF2,過點D作DG⊥BC于G,
∵BD=CD,∠ABC=60°,點D是角平分線上一點,
∴∠DBC=∠DCB=×60°=30°,BG=BC=,
∴BD=3
∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,
∠CDF2=360°﹣150°﹣60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,,
∴△CDF1≌△CDF2(SAS),
∴點F2也是所求的點,
∵∠ABC=60°,點D是角平分線上一點,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=3,
∴BE=×3÷cos30°=÷=3(同求BD的方法),
∴BF1=3,BF2=BF1+F1F2=3+3=6,
故BF的長為3或6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出方程kx+b﹣=0的解;
(3)求△AOB的面積;
(4)觀察圖象,直接寫出不等式kx+b﹣<0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸分別交于點A,B,與反比例函數(shù)(為常數(shù),且)在第一象限的圖象交于點E,F(xiàn).過點E作EM⊥y軸于M,過點F作FN⊥x軸于N,直線EM與FN交于點C.若(為大于l的常數(shù)).記△CEF的面積為,△OEF的面積為,則 =________. (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,正方形ABCD,∠EAF=45°,
(1)如圖1,當點E,F分別在邊BC,CD上,連接EF,求證:EF=BE+DF;
(2)如圖2,點M,N分別在邊AB,CD上,且BN=DM,當點E,F分別在BM,DN上,連接EF,請?zhí)骄烤段EF,BE,DF之間滿足的數(shù)量關系,并加以證明;
(3)如圖3,當點E,F分別在對角線BD,邊CD上,若FC=2,則BE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點.
(1)求k和n的值;
(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B兩點的坐標分別為(2,0),(0,2),⊙C的圓心坐標為(-1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于點E ,則△ABE面積的最小值是 _____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)在一個不透明的袋中裝有3 個完全相同的小球,上面分別標號為1、2、3,從中隨機摸出兩個小球,并用球上的數(shù)字組成一個兩位數(shù).
(1)求組成的兩位數(shù)是奇數(shù)的概率;
(2)小明和小華做游戲,規(guī)則是:若組成的兩位數(shù)是4的倍數(shù),小明得3分,否則小華得3分,你認為該游戲公平嗎?說明理由;若不公平,請修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中以AB為直徑作⊙O,分別交邊AC、BC于D、E,過D作DF⊥BC于F,且D為弧AE的中點.
(1)求證:DF為⊙O的切線;
(2)若且AD=時,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com