如圖所示,甲、乙兩船同時由港口A出發(fā)開往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時;乙船速度為20海里/小時,先沿正東方向航行1小時后,到達C港口接旅客,停留半小時后再轉(zhuǎn)向北偏東30°方向開往B島,其速度仍為20海里/小時.

(1)求港口A到海島B的距離;

(2)B島建有一座燈塔,在離燈塔方圓5海里內(nèi)都可以看見燈塔,問甲、乙兩船哪一艘先看到燈塔?

 

【答案】

(1)

(2)乙船

【解析】

試題分析:(1)過點B作BD⊥AE于D(1分)

在Rt△BCD中,∠BCD=60°,設(shè)CD=x

則BD=,BC=2x

在Rt△ABD中,∠BAD=45°

則AD=BD=,AB=BD=

由AC+CD=AD得20+x=

(3分)

(1分)

答:港口A到海島B的距離為海里.

(2)甲船看見燈塔所用時間:小時(1分)

乙船看見燈塔所用時間:小時(1分)

所以乙船先看見燈塔.(1分)

考點:直角三角形的基本知識

點評:直角三角形的基本知識的運用是本題的解題關(guān)鍵,其中勾股定理及其逆定理等知識是?键c

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,甲,乙兩船同時從港口出發(fā),甲船以16.1海里/小時的速度向南偏東58°方向航行,乙船向南偏西32°方向航行,航行了2小時,甲船到達A處并觀測到B處的乙船恰好在其正西方向,則乙船的速度為
 
海里/小時.(結(jié)果精確到0.1海里/小時)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,甲、乙兩船同時由港口 A出發(fā)開往海島B,甲船沿北偏東60°方向向海島B航行,其速度為15海里/小時;乙船速度為20海里/小時,先沿正東方向航行1小時后,到達C港口接旅客,停留半精英家教網(wǎng)小時后再轉(zhuǎn)向正東北方向開往B島,其速度仍為20海里/小時.
(1)設(shè)甲船出發(fā)t小時,與B島距離為s海里,求s與t之間的函數(shù)關(guān)系式;
(2)B島建有一座燈塔,在燈塔方圓5海里內(nèi)都可以看見燈塔,問甲、乙兩船哪一艘先看到燈塔,兩船看到燈塔的時間相差多少?(精確到分鐘,
3
取1.73,
2
取1.41)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州模擬)如圖所示,甲、乙兩船同時由港口A出發(fā)開往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時;乙船速度為20海里/小時,先沿正東方向航行1小時后,到達C港口接旅客,停留半小時后再轉(zhuǎn)向北偏東30°方向開往B島,其速度仍為20海里/小時.
(1)求港口A到海島B的距離;
(2)B島建有一座燈塔,在離燈塔方圓5海里內(nèi)都可以看見燈塔,問甲、乙兩船哪一艘先看到燈塔?

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省無錫市育才中學九年級上學期期末考試數(shù)學試卷(帶解析) 題型:解答題

如圖所示,甲、乙兩船同時由港口A出發(fā)開往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時;乙船速度為20海里/小時,先沿正東方向航行1小時后,到達C港口接旅客,停留半小時后再轉(zhuǎn)向北偏東30°方向開往B島,其速度仍為20海里/小時.

(1)求港口A到海島B的距離;
(2)B島建有一座燈塔,在離燈塔方圓5海里內(nèi)都可以看見燈塔,問甲、乙兩船哪一艘先看到燈塔?

查看答案和解析>>

同步練習冊答案