【題目】我們把正六邊形對(duì)角線的交點(diǎn)稱為它的中心,正六邊形的頂點(diǎn)及它的中心稱作特征點(diǎn),如圖(1)有六個(gè)頂點(diǎn)和一個(gè)中心點(diǎn),因此共有7個(gè)特征點(diǎn),照?qǐng)D(1)的方式繼續(xù)排列正六邊形,使得相鄰兩個(gè)正六邊形的一邊重合,這樣得到圖(2),圖(3

觀察以上圖形得到表:

圖形的名稱

特征點(diǎn)的個(gè)數(shù)

1

7

2

12

1)第n個(gè)圖形的特征點(diǎn)有多少個(gè)?

2)第100個(gè)圖形的特征點(diǎn)有多少個(gè)?

3)第幾個(gè)圖形有2017個(gè)特征點(diǎn)?請(qǐng)說(shuō)明理由.

【答案】(1)5n+2;(2)502;(3) 2017,理由見(jiàn)解析

【解析】整體分析

(1)第一個(gè)圖形可以看成是5×1+2=7個(gè)點(diǎn),后面每一個(gè)圖形比它前面的圖形多5個(gè)點(diǎn),由此即可得到規(guī)律;(2)由(1)中的規(guī)律進(jìn)行計(jì)算;(3)根據(jù)(1)中的規(guī)律計(jì)算,注意n要是正整數(shù).

:(1∵圖1中有5×1+2=7個(gè)點(diǎn),

2中有5×2+2=12個(gè)點(diǎn),

……

∴圖n中有5n+2個(gè)特征點(diǎn);

2)當(dāng)n=100時(shí),5n+2=502,

即第100個(gè)圖形的特征點(diǎn)有502個(gè);

3)由5n+2=2017n=403,

即第403個(gè)圖形有2017個(gè)特征點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖所示

1作出ABC關(guān)于y軸對(duì)稱的ABC,并寫出ABC三個(gè)頂點(diǎn)的坐標(biāo)

2)在x軸上畫出點(diǎn)P使PA+PC最小,并直接寫出此時(shí)PA+PC的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù). 已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成. 工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開(kāi)始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

1按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?

2為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G 型裝置的加工,且每人每天只能加工4個(gè)G型裝置. 請(qǐng)問(wèn)至少需要補(bǔ)充多少名新工人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解

,即23

的整數(shù)部分為2,小數(shù)部分為2,

112

1的整數(shù)部分為1

1的小數(shù)部分為2

解決問(wèn)題:已知:a3的整數(shù)部分,b3的小數(shù)部分,

求:(1a,b的值;

2)(﹣a3+b+42的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列關(guān)于自然數(shù)的等式:

a132-12=8×1

a252-32=8×2;

a372-52=8×3;……

根據(jù)上述規(guī)律解決下列問(wèn)題

寫出第a4個(gè)等式___________;

寫出你猜想的第an個(gè)等式(用含n的式子表示),并驗(yàn)證其正確性;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測(cè)驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績(jī),制作了如下統(tǒng)計(jì)圖表:

甲、乙射擊成績(jī)統(tǒng)計(jì)表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

1

(1)請(qǐng)補(bǔ)全上述圖表(請(qǐng)直接在表中填空和補(bǔ)全折線圖);

(2)如果規(guī)定成績(jī)較穩(wěn)定者勝出,你認(rèn)為誰(shuí)將勝出?說(shuō)明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為BD(如圖乙).再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC,沿BAC的平分線AB1折疊,剪掉重疊部分將余下部分沿B1A1C的平分線A1B2折疊,剪掉重疊部分;;將余下部分沿BnAnC的平分線AnBn+1折疊點(diǎn)Bn與點(diǎn)C重合.無(wú)論折疊多少次,只要最后一次恰好重合,我們就稱BACABC的好角

小麗展示了確定BACABC的好角的兩種情形.情形一如圖2,沿等腰三角形ABC頂角BAC的平分線AB1折疊點(diǎn)B與點(diǎn)C重合;情形二如圖3,沿ABCBAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合

1小麗經(jīng)過(guò)三次折疊發(fā)現(xiàn)了BACABC的好角請(qǐng)?zhí)骄?/span>BC不妨設(shè)BC之間的等量關(guān)系

2根據(jù)以上內(nèi)容猜想若經(jīng)過(guò)n次折疊BACABC的好角,BC不妨設(shè)BC之間的等量關(guān)系為

3如果一個(gè)三角形的最小角是15°,且滿足該三角形的三個(gè)角均是此三角形的好角則此三角形另兩個(gè)角的度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案