如圖,一個(gè)直角三角形的直角頂點(diǎn)P在正方形ABCD的對(duì)角線(xiàn)AC所在的直線(xiàn)上滑動(dòng),并使得一條直角邊始終經(jīng)過(guò)B點(diǎn).
(1)如圖1,當(dāng)直角三角形的另一條直角邊和邊CD交于Q點(diǎn),
PB
PQ
=______;
(2)如圖2,當(dāng)另一條直角邊和邊CD的延長(zhǎng)線(xiàn)相交于Q點(diǎn)時(shí),
PB
PQ
=______;
(3)如圖3或圖4,當(dāng)直角頂點(diǎn)P運(yùn)動(dòng)到AC或CA的延長(zhǎng)線(xiàn)上時(shí),請(qǐng)你在圖3或圖4中任選一種情形,求
PB
PQ
的值,并說(shuō)明理由.
(1)1;

(2)1;

(3)如圖3,
PB
PQ
=1,
過(guò)點(diǎn)P作PN⊥AB,垂足N在AB的延長(zhǎng)線(xiàn)上,PN交CQ于點(diǎn)M,
在正方形ABCD中,ABCD,
∴∠PMQ=∠N=∠CBN=90°,
∴CBNM是矩形,
∴CM=BN,
易證△CMP是等腰直角三角形,
∴PM=CM=BN,
又∠1=∠PBN=90°-∠BPN,
∴△PMQ≌△BNP,(ASA)
∴PQ=PB,
PB
PQ
=1,
如圖4,
PB
PQ
=1,
過(guò)點(diǎn)P作PN⊥AB,垂足N在BA的延長(zhǎng)線(xiàn)上,PN的延長(zhǎng)線(xiàn)交CQ于點(diǎn)M,
在正方形ABCD中,ABCD,
∴∠PMC=∠PNB=∠CBN=90°,
∴CBNM是矩形,
∴CM=BN,
易證△CMP是等腰直角三角形,
∴PM=CM=BN,
又∠1=∠2=90°-∠BPN,
∴△BNP≌△PMQ(ASA),
∴PB=PQ,
PB
PQ
=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方形具有而菱形不一定具有的性質(zhì)是( 。
A.對(duì)角線(xiàn)互相垂直B.對(duì)角線(xiàn)平分一組對(duì)角
C.對(duì)角線(xiàn)相等D.對(duì)角線(xiàn)互相平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖正方形ABCD,E、F分別為AD、AB的中點(diǎn),CE、DF交于P,求證:CE⊥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)E為正方形ABCD的對(duì)角線(xiàn)上一點(diǎn),連接DE,BE并延長(zhǎng)交AD于點(diǎn)F,DE⊥EG交BC于G,下列結(jié)論:
①△BEC≌△DEC;②∠BED=120°時(shí),EF平分∠AED;③EG=ED;④BG=
2
AE;⑤當(dāng)點(diǎn)G為BC的中點(diǎn)時(shí),DF=2AF.
其中正確的有:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,∠ACB=90°,BC的垂直平分線(xiàn)EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是( 。
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知:ABCD是正方形,E是CF上的一點(diǎn),若DBEF是菱形,則∠EBC等于( 。
A.15°B.22.5°C.30°D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方形ABCD的邊BC的延長(zhǎng)線(xiàn)上取一點(diǎn)E,使CE=AC,AE交CD于點(diǎn)F.那么,∠ACB=______°,∠E=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD中,點(diǎn)O是對(duì)角線(xiàn)AC的中點(diǎn),P是對(duì)角線(xiàn)AC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F.如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),顯然有DF=CF.
(1)如圖2,若點(diǎn)P在線(xiàn)段AO上(不與點(diǎn)A、O重合),PE⊥PB且PE交CD于點(diǎn)E.
①求證:DF=EF;
②寫(xiě)出線(xiàn)段PC、PA、CE之間的一個(gè)等量關(guān)系,并證明你的結(jié)論;
(2)若點(diǎn)P在線(xiàn)段OC上(不與點(diǎn)O、C重合),PE⊥PB且PE交直線(xiàn)CD于點(diǎn)E.請(qǐng)完成圖3并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫(xiě)出相應(yīng)的結(jié)論.(所寫(xiě)結(jié)論均不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在一個(gè)正方形的工件中心挖去一個(gè)小正方形(小正方形的四邊與大正方形的四邊分別平方),留下一個(gè)“方環(huán)”,現(xiàn)在要想求這個(gè)方環(huán)的面積,但只準(zhǔn)測(cè)量一次(即只準(zhǔn)測(cè)一條線(xiàn)段的長(zhǎng)),你能辦到嗎?請(qǐng)敘述你的方法:______.

查看答案和解析>>

同步練習(xí)冊(cè)答案