【題目】如圖,在Rt△ABC中,∠BAC=90°,以邊AB為直徑作O,交斜邊BCD,E在弧上,連接AE、EDDA,連接AEED、DA

(1)求證:∠DAC=∠AED;

(2)若點(diǎn)E的中點(diǎn),AEBC交于點(diǎn)F,當(dāng)BD=5,CD=4時(shí),求DF的長(zhǎng).

【答案】(1)詳見解析;(2)DF=2.

【解析】

(1)根據(jù)圓周角定理得到ADBC,根據(jù)余角的性質(zhì)和圓周角定理即可得到結(jié)論;

(2)根據(jù)等腰三角形的性質(zhì)得到CA=CF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

(1)證明:∵AB是⊙O的直徑,

ADBC,

∵∠BAC=90°,

∴∠CAD+BAD=BAD+B=90°,

∴∠CAD=B,

∵∠E=ABD,

∴∠DAC=AED;

(2)∵點(diǎn)E的中點(diǎn),

∴∠BAE=EAD,

∵∠CFA=ABC+BAE,CAE=CDA+EAD,

∴∠CFA=CAE,

CA=CF,

∵∠BAC=ADB=90°,

∴∠ACD=BCA,

∴△ADC∽△BAC,

,

AC2=BC×CD=(5+4)×4=36,

解得AC=6,

CA=CF=6,

DF=CA﹣CD=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)P(2,)作x軸的平行線交y軸于點(diǎn)A,交雙曲線于點(diǎn)N,作PM⊥AN交雙曲線于點(diǎn)M,連接AM,若PN=4.

(1)求k的值;

(2)設(shè)直線MN解析式為y=ax+b,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,以此類推,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=(

A. B. C. D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),直線ABx軸于點(diǎn)A(﹣4,0),交y軸于點(diǎn)B,拋物線y=ax2+2ax+3(a≠0)經(jīng)過(guò)A,B兩點(diǎn).P是線段AO上的一動(dòng)點(diǎn),過(guò)點(diǎn)PPCx軸交直線AB于點(diǎn)C,交拋物線于點(diǎn)D

(1)求aAB的長(zhǎng).

(2)連結(jié)PB,若tan∠ABP=,求點(diǎn)P的坐標(biāo).

(3)連結(jié)BD,以BD為邊作正方形BDEF,是否存在點(diǎn)P使點(diǎn)E恰好落在拋物線的對(duì)稱軸上?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(4)連結(jié)OC,若SBDCSOBC=1:2,將線段BD繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),得到DB.則在旋轉(zhuǎn)的過(guò)程中,當(dāng)點(diǎn)A,B到直線DB的距離和最大時(shí),請(qǐng)直接寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一塊含30°角的三角板的直角頂點(diǎn)放在反比例函數(shù)y=﹣x<0)的圖象上的點(diǎn)C處,另兩個(gè)頂點(diǎn)分別落在原點(diǎn)Ox軸的負(fù)半軸上的點(diǎn)A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點(diǎn)D的坐標(biāo)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2mA處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度ym)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m

1)當(dāng)h=2.6時(shí),求yx的關(guān)系式(不要求寫出自變量x的取值范圍)

2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由;

3)若球一定能越過(guò)球網(wǎng),又不出邊界,求h的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用48米長(zhǎng)的竹籬笆在空地上,圍成一個(gè)綠化場(chǎng)地,現(xiàn)有兩種設(shè)計(jì)方案,一種是圍成正方形的場(chǎng)地;另一種是圍成圓形場(chǎng)地.現(xiàn)請(qǐng)你選擇,圍成________(圓形、正方形兩者選一)場(chǎng)在面積較大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究相似問題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:

甲:將邊長(zhǎng)為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為35的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形不相似.

對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是( )

A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) yx2bxc(b,c均為常數(shù),當(dāng)x1時(shí),函數(shù)有最小值.甲乙丙三位同學(xué)繼續(xù)研究,得出以下結(jié)論:甲該函數(shù)的最小值為3;乙:1是方程x2bxc0的一個(gè)根;丙:當(dāng)x2時(shí),y4.若這三個(gè)結(jié)論中只有一個(gè)是錯(cuò)誤的,那么得出錯(cuò)誤結(jié)論的同學(xué)是___.

查看答案和解析>>

同步練習(xí)冊(cè)答案