【題目】在矩形ABCD中,∠ABC的平分線交AD于點(diǎn)E,∠BED的平分線交DC于點(diǎn)F,若AB=6,點(diǎn)F恰為DC的中點(diǎn),則BC=(結(jié)果保留根號(hào))

【答案】3+3
【解析】解:延長(zhǎng)EF和BC,交于點(diǎn)G,如圖所示: ∵矩形ABCD中,∠B的角平分線BE與AD交于點(diǎn)E,
∴∠ABE=∠AEB=45°,
∴AB=AE=6,
∴等腰直角△ABE中,BE= =6 ,
又∵∠BED的角平分線EF與DC交于點(diǎn)F,
∴∠BEG=∠DEF
∵AD∥BC
∴∠G=∠DEF
∴∠BEG=∠G
∴BG=BE=6 ,
∵∠G=∠DEF,∠EFD=∠GFC,
∴△EFD∽△GFC
=1,
∴CG=DE,
設(shè)CG=DE=x,則AD=6+x=BC,
∵BG=BC+CG,
∴6 =6+x+x,
解得:x=3 ﹣3
∴BC=6+(3 ﹣3)=3+3
故答案為:3+3

先延長(zhǎng)EF和BC,交于點(diǎn)G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長(zhǎng),然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出CG與DE的相等關(guān)系,并根據(jù)BG=BC+CG進(jìn)行計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市居民用水實(shí)行階梯收費(fèi),每戶每月用水量如果未超過(guò)20噸,按每噸元收費(fèi)如果超過(guò)20噸,未超過(guò)的部分按每噸元收費(fèi),超過(guò)的部分按每噸元收費(fèi)設(shè)某戶每月用水量為x噸,應(yīng)收水費(fèi)為y元.

設(shè)某戶居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

設(shè)某戶居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

若該城市某戶5月份水費(fèi)平均為每噸元,求該戶5月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時(shí)間后小明才出發(fā),途中小明在離家1400米處的報(bào)亭休息了一段時(shí)間后繼續(xù)按原來(lái)的速度前往游泳館.兩人離家的距離y(米)與小明所走時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:

(1)小明出發(fā)   分鐘后第一次與爸爸相遇;

(2)分別求出爸爸離家的距離y1和小明到達(dá)報(bào)亭前離家的距離y2與時(shí)間x之間的函數(shù)關(guān)系式;

(3)求小明在報(bào)亭休息了多長(zhǎng)時(shí)間遇到姍姍來(lái)遲的爸爸;

(4)若游泳館離小明家2000米,請(qǐng)你通過(guò)計(jì)算說(shuō)明誰(shuí)先到達(dá)游泳館.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自20141228日北京公交地鐵調(diào)價(jià)以來(lái),人們的出行成本發(fā)生了較大的變化. 小林根據(jù)新聞,將地鐵和公交車的票價(jià)繪制成了如下兩個(gè)表格。(說(shuō)明:表格中“612公里指的是大于6公里,小于等于12公里,其他類似)

北京地鐵新票價(jià)

里程范圍

對(duì)應(yīng)票價(jià)

06公里

3

612公里

4

1222公里

5

2232公里

6

32公里以上

每增加1元可再乘坐20公里

*持市政交通一卡通花費(fèi)累計(jì)滿一定金額后可打折

北京公交車新票價(jià)

里程范圍

對(duì)應(yīng)票價(jià)

010公里

2

1015公里

3

1520公里

4

20公里以上

每增加1元可再乘坐5公里

*持市政交通一卡通刷卡,普通卡打5折,

學(xué)生卡打2.5

根據(jù)以上信息回答下列問(wèn)題:

小林辦了一張市政交通一卡通學(xué)生卡,目前乘坐地鐵沒(méi)有折扣。

1)如果小林全程乘坐地鐵的里程為14公里,用他的學(xué)生卡需要刷卡交費(fèi)________元;

2)如果小林全程乘坐公交車的里程為16公里,用他的學(xué)生卡需要刷卡交________元;

3)小林用他的學(xué)生卡乘坐一段地鐵后換乘公交車,兩者累計(jì)里程為12公里。已知他乘坐地鐵平均每公里花費(fèi)0.4元,乘坐公交車平均每公里花費(fèi)0.25元,此次行程共花費(fèi)4.5元。請(qǐng)問(wèn)小林乘坐地鐵和公交車的里程分別是多少公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn)和點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出不等式的解集;

(3)若點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為C,問(wèn)是否在x下方存在一點(diǎn)D,使以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形是平行四邊形.若存在,直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx+2(a≠0)圖象的頂點(diǎn)在第二象限,且過(guò)點(diǎn)(1,0),則a的取值范圍是;若a+b的值為非零整數(shù),則b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F。

(1)求證:CE=CF。

(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點(diǎn)E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線分別交x軸、y軸于A、B兩點(diǎn),點(diǎn)P是線段AB上的一動(dòng)點(diǎn),以P為圓心,r為半徑畫圓.

(1)若點(diǎn)P的橫坐標(biāo)為﹣3,當(dāng)⊙Px軸相切時(shí),則半徑r ,此時(shí)⊙Py軸的位置關(guān)系是 .(直接寫結(jié)果)

(2)若,當(dāng)⊙P與坐標(biāo)軸有且只有3個(gè)公共點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).

(3)如圖2,當(dāng)圓心PA重合,時(shí),設(shè)點(diǎn)C為⊙P上的一個(gè)動(dòng)點(diǎn),連接OC,將線段OC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長(zhǎng)的最值并直接寫出對(duì)應(yīng)的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小穎在教學(xué)樓四層樓上,每層樓高均為3米,測(cè)得目高1.5米,看到校園里的圓形花園最近點(diǎn)的俯角為60°,最遠(yuǎn)點(diǎn)的俯角為30°,請(qǐng)你幫小穎算出圓形花園的面積是多少平方米?(結(jié)果保留1位小數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案