分析 只要證明△BAE≌△CAD,推出∠BEA=∠CDA=39°,即可解決問題.
解答 解:∵△ABC和△ADE均為等邊三角形,
∴AB=AC,AD=AE,∠DAE=∠BAC=∠AED=60°,
∴∠BAE=∠CAD,
在△BAE和△CAD中,
$\left\{\begin{array}{l}{BA=CA}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△BAE≌△CAD,
∴∠BEA=∠CDA=39°,
∴∠BED=∠BAE+∠AED=39°+60°=99°.
故答案為99.
點評 本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com