已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有______(填序號)
①圖象開口向下,與y軸交于正半軸,對稱軸為x=1,能得到:a<0,c>0,-
b
2a
=1,
∴b=-2a>0,
∴abc<0,
所以錯(cuò)誤;
②當(dāng)x=-1時(shí),由圖象知y<0,
把x=-1代入解析式得:a-b+c<0,
∴b>a+c,
∴②錯(cuò)誤;
③圖象開口向下,與y軸交于正半軸,對稱軸為x=1,
能得到:a<0,c>0,-
b
2a
=1,
所以b=-2a,
所以4a+2b+c=4a-4a+c>0.
∴③正確;
④∵由①②知b=-2a且b>a+c,
∴2c<3b,④正確;
⑤∵x=1時(shí),y=a+b+c(最大值),
x=m時(shí),y=am2+bm+c,
∵m≠1的實(shí)數(shù),
∴a+b+c>am2+bm+c,
∴a+b>m(am+b)成立.
∴⑤正確.
故正確結(jié)論的序號是③,④,⑤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線的對稱軸是直線,且經(jīng)過點(diǎn)(3,0),則的值為(   )
A.0B.-1 C. 1 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=ax+c與二次函數(shù)y=ax2+bx+c在同一直角坐標(biāo)系中大致的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
①a,b同號;②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=0;④當(dāng)y=-2時(shí),x的值只能取2;
⑤當(dāng)-1<x<5時(shí),y<0.其中正確的有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)a,b,c滿足:a<0,a-b+c>0,則一定有( 。
A.b2-4ac>0B.b2-4ac≥0C.b2-4ac≤0D.b2-4ac<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+3與y軸交于點(diǎn)A,過點(diǎn)A與x軸平行的直線交拋物線y=
1
3
x2
于點(diǎn)B、C,則BC的長值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②方程ax2+bx+c=0的兩根之和大于0;③y隨x的增大而增大;④a-b+c<0,其中正確的個(gè)數(shù)( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論正確的是( 。
A.a(chǎn)>0B.c<0C.b2-4ac<0D.a(chǎn)+b+c>0

查看答案和解析>>

同步練習(xí)冊答案