【題目】△ABC中,AB=AC,∠A為銳角,CD為AB邊上的高,I為△ACD的內(nèi)切圓圓心,則∠AIB的度數(shù)是( )
A. 120°B. 125°C. 135°D. 150°
【答案】C
【解析】
CD是AB邊上的高,則∠ADC=90°,I是△ACD的內(nèi)心,則AI、CI分別是∠DAC和∠DCA的角平分線,由此可求得∠AIC的度數(shù);再根據(jù)∠AIB和∠AIC的關(guān)系,得出∠AIB.
解:如圖.∵CD為AB邊上的高,
∴∠ADC=90°,
∴∠BAC+∠ACD=90°;
又∵I為△ACD的內(nèi)切圓圓心,
∴AI、CI分別是∠BAC和∠ACD的角平分線,
∴∠IAC+∠ICA=45°,
∴∠AIC=135°;
又∵AB=AC,∠BAI=∠CAI,AI=AI;
∴△AIB≌△AIC(SAS),
∴∠AIB=∠AIC=135°.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙P與y軸相切于點C(0,3),與x軸相交于點A(1,0),B(9,0).直線y=kx-3恰好平分⊙P的面積,那么k的值是 ( )
A.
B.
C.
D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,=,=,=,過點作,過作,得陰影;再過作,過作,得陰影;…如此下去,請猜測這樣得到的所有陰影三角形的面積之和為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關(guān)于x的方程(a≠0)有兩個不相等的實數(shù)根,且這兩根的值都在1,3之間(含l,3),則a的取值范圍是_______。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程。
(1)求證:此方程總有實數(shù)根;
(2)若m為整數(shù),且此方程有兩個互不相等的負整數(shù)根,求m的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC的三個頂點都在格點上,結(jié)合所給的平面直角坐標系解答下列問題:
(1)將△ABC向右平移5個單位長度,畫出平移后的△A1B1C1;
(2)畫出△ABC關(guān)于x軸對稱的△A2B2C2;
(3)將△ABC繞原點O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A3B3C3;
(4)在△A1B1C1、△A2B2C2、△A3B3C3中,△ 與△ 成軸對稱;△ 與△ 成中心對稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com