【題目】如圖,在中,=,=,=,過點作,過作,得陰影;再過作,過作,得陰影;…如此下去,請猜測這樣得到的所有陰影三角形的面積之和為( )
A. B. C. D.
【答案】D
【解析】
可從整體的角度來求解此題:易知所有白色部分的小直角三角形都與對應(yīng)陰影部分的三角形相似,那么它們的面積比應(yīng)該等于相似比的平方,它們的相似比為AB:A 1 B,而AB的長已知,只要求得A1B的長即可求得陰影部分占△ABC面積的比例大小,從而可求得陰影部分的面積和.
解:∵A1B1∥AB,∴∠ABA1=∠BA1B1,
∵∠AA1B=∠A1B1B=90°,∴Rt△ABA1 ∽△BA1B1,
同理可證:Rt△A1B1A2 ∽Rt△B1A2B2 ,
……;
即白色部分的小直角三角形與陰影部分的小直角三角形逐一對應(yīng)相似,
在Rt△ABC中,BA1 ⊥AC,由S=ABBC=ACBA1,得BA1 =,
∴AB:BA1 =3:=5:4,
∴白色部分小直角三角形的面積和:陰影部分小直角三角形的面積和=AB2 :BA12 =25:16,
故S 陰影部分小直角三角形的面積和=S△ABC=.故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠BAD=120°,點E在射線AC上(不包括點A和點C),過點E的直線GH交直線AD于點G,交直線BC于點H,且GH∥DC,點F在BC的延長線上,CF=AG,連接ED,EF,DF.
(1)如圖1,當點E在線段AC上時,
①判斷△AEG的形狀,并說明理由.
②求證:△DEF是等邊三角形.
(2)如圖2,當點E在AC的延長線上時,△DEF是等邊三角形嗎?如果是,請證明你的結(jié)論;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:①;②; ③abc>0;④4a-2b+c<0;⑤c-a>1其中所有正確結(jié)論的序號是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線y=ax2+bx+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點A的坐標為(﹣4,0),B的坐標為(1,0),且OC=4OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求三角形ACD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,直接寫出P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2-(2k-1)x+k2,其中k是常數(shù).
(1)若該拋物線與x軸有交點,求k的取值范圍;
(2)若此拋物線與x軸其中一個交點的坐標為(-1,0),試確定k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠A為銳角,CD為AB邊上的高,I為△ACD的內(nèi)切圓圓心,則∠AIB的度數(shù)是( )
A. 120°B. 125°C. 135°D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用力旋轉(zhuǎn)如圖所示的甲轉(zhuǎn)盤和乙轉(zhuǎn)盤的指針,如果指針停在藍色區(qū)域就稱為成功.
A同學(xué)說:“乙轉(zhuǎn)盤大,相應(yīng)的藍色部分的面積也大,所以選乙轉(zhuǎn)盤成功的機會比較大.”
B同學(xué)說:“轉(zhuǎn)盤上只有兩種顏色,指針不是停在紅色上就是停在藍色上,因此兩個轉(zhuǎn)盤成功的機會都是50%.”
你同意兩人的說法嗎?如果不同意,請你預(yù)言旋轉(zhuǎn)兩個轉(zhuǎn)盤成功的機會有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列給定的三點能確定一個圓的是( )
A. 線段的中點及兩個端點
B. 角的頂點及角的邊上的兩點
C. 三角形的三個頂點
D. 矩形的對角線交點及兩個頂點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com